8.兩條平行線2x+3y-5=0和2x+3y-2=0間的距離是$\frac{3\sqrt{13}}{13}$.

分析 根據(jù)兩條平行線之間的距離公式直接計(jì)算,即可得到直線2x+3y-5=0和2x+3y-2=0的距離.

解答 解:∵直線2x+3y-5=0和2x+3y-2=0互相平行
∴直線2x+3y-5=0和2x+3y-2=0的距離等于
d=$\frac{|-5+2|}{\sqrt{4+9}}$=$\frac{3\sqrt{13}}{13}$,
故答案為:$\frac{3\sqrt{13}}{13}$.

點(diǎn)評(píng) 本題給出兩條直線互相平行,求它們之間的距離,著重考查了平行線間的距離公式的知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,測(cè)量河對(duì)岸的塔高AB時(shí),選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D,測(cè)得∠BDC=120°,BD=CD=10米,并在點(diǎn)C測(cè)得塔頂A的仰角為60°,則塔高AB=30m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.“若x=1且y=1,則x+y=2”的逆否命題是“若x+y≠2,則x≠1,或y≠1”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;
其中正確的結(jié)論是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若數(shù)列{an}滿足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N*),則該數(shù)列的前2014項(xiàng)的乘積等于( 。
A.3B.-6C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合A={-1,0,1},B={x|x>0},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足對(duì)于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判斷f(x)的奇偶性并證明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(3x+1)+f(-6)≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合U={1,2,3,4,5,6},M={2,3,5},N={4,6},則(∁UM)∩N=( 。
A.{4,6}B.{1,4,6}C.D.{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點(diǎn),若過直徑CD與點(diǎn)E的平面與圓錐側(cè)面的交線是以E為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)P的距離為$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案