設(shè)f(x)=
-2x,x≤0
f(x-1),x>0
,若f(x)=x+a有且僅有三個(gè)解,則實(shí)數(shù)a的取值范圍( 。
A、[1,2]
B、(-∞,2)
C、[1,+∞)
D、(-∞,1)
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:要求滿足條件關(guān)于x的方程f(x)=x+a有三個(gè)實(shí)根時(shí),實(shí)數(shù)a的取值范圍,我們可以轉(zhuǎn)化求函數(shù)y=f(x)與函數(shù)y=x+a的圖象有三個(gè)交點(diǎn)時(shí)實(shí)數(shù)a的取值范圍,作出兩個(gè)函數(shù)的圖象,通過圖象觀察法可得出a的取值范圍.
解答: 解:函數(shù)f(x)=
-2x,x≤0
f(x-1),x>0
的圖象如圖所示,(當(dāng)x>0時(shí),函數(shù)的圖象呈現(xiàn)周期性變化),

由圖可知:
(1)當(dāng)a≥2時(shí),兩個(gè)圖象有且只有一個(gè)公共點(diǎn);
(2)當(dāng)1≤a<2時(shí),兩個(gè)圖象有兩個(gè)公共點(diǎn);
(3)當(dāng)a<1時(shí),兩個(gè)圖象有三個(gè)公共點(diǎn);
即當(dāng)a<1時(shí),f(x)=x+a有三個(gè)實(shí)解,
故實(shí)數(shù)a的取值范圍為:(-∞,1)
故選D
點(diǎn)評:本題考查的知識點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,根據(jù)方程的根即為對應(yīng)函數(shù)零點(diǎn),將本題轉(zhuǎn)化為求函數(shù)零點(diǎn)個(gè)數(shù),進(jìn)而利用圖象法進(jìn)行解答是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

先后拋擲兩枚均勻的正方體骰子(它們的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1、2、3、4、5、6),骰子朝上的面的點(diǎn)數(shù)分別為x,y,則y=2x的概率為(  )
A、
1
6
B、
1
12
C、
5
36
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上單調(diào)連續(xù)函數(shù),且有下列對應(yīng)值表
x 1 2 3 4 5
f(x) -3 -2 -1 2 3
則函數(shù)f(x)的零點(diǎn)所在區(qū)間是( 。
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2),M是平面區(qū)域
x-y+1≥0
2x+y-4≤0
x≥0,y≥0
內(nèi)的動點(diǎn),O為坐標(biāo)原點(diǎn),那么
a
OM
的最小值為( 。
A、3B、-3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,3)是角θ終邊上一點(diǎn),且cosθ=-
4
5
,則x的值為( 。
A、5B、-5C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

角α的終邊過點(diǎn)(2sin30°,-2cos30°),則cosα的值為( 。
A、
1
2
B、
3
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足:a2+a9=a6,則a4=( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(x+2)2(x-1)3的極大值點(diǎn)是(  )
A、x=-2或1
B、x=-1或2
C、x=-1
D、x=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:首項(xiàng)為a1,公比q≠1的等比數(shù)列{an}的前n項(xiàng)和為:Sn=
a1(1-qn)
1-q

查看答案和解析>>

同步練習(xí)冊答案