在數(shù)列{an}中,an=1-+…+,則ak+1等于(  )

A.ak+ B.ak+

C.ak+ D.ak+

 

D

【解析】由于a1=1-,a2=1-,…

ak=1-+…+

∴ak+1=ak+.

故選D.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:選擇題

如圖所示,已知空間四邊形OABC中,|OB|=|OC|,且∠AOB=∠AOC,則、夾角θ的余弦值為(  )

A.0 B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-3空間點直線平面之間的位置關系(解析版) 題型:填空題

如圖所示,ABCD-A1B1C1D1是長方體,AA1=a,∠BAB1=∠B1A1C1=30°,則AB與A1C1所成的角為________,AA1與B1C所成的角為________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-2空間幾何體的表面積和體積(解析版) 題型:選擇題

一個直棱柱被一個平面截去一部分后所剩幾何體的三視圖如圖所示,則該幾何體的體積為(  )

A.9 B.10 C.11 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-7數(shù)學歸納法(解析版) 題型:解答題

設數(shù)列{an}滿足a1=3,an+1=an2-2nan+2,n=1,2,3,…

(1)求a2,a3,a4的值,并猜想數(shù)列{an}的通項公式(不需證明);

(2)記Sn為數(shù)列{an}的前n項和,試求使得Sn<2n成立的最小正整數(shù)n,并給出證明.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-7數(shù)學歸納法(解析版) 題型:選擇題

用數(shù)學歸納法證明1++…+> (n∈N*)成立,其初始值至少應取(  )

A.7 B.8 C.9 D.10

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-6直接證明與間接證明(解析版) 題型:填空題

請閱讀下列材料:若兩個正實數(shù)a1,a2滿足a12+a22=1,那么a1+a2≤.

證明:構造函數(shù)f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因為對一切實數(shù)x,恒有f(x)≥0,所以Δ≤0,從而得4(a1+a2)2-8≤0,所以a1+a2≤.

根據(jù)上述證明方法,若n個正實數(shù)滿足a12+a22+…+an2=1時,你能得到的結論為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-5合情推理與演繹推理(解析版) 題型:選擇題

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復數(shù)集):

①“若a,b∈R,則a-b=0⇒a=b”,類比推出“若a,b∈C,則a-b=0⇒a=b”;

②“若a,b,c,d∈R,則復數(shù)a+bi=c+di⇒a=c,b=d”,類比推出,“若a,b,c,d∈Q,則a+b=c+d⇒a=c,b=d”;

③“若a,b∈R,則a-b>0⇒a>b”,類比推出“若a,b∈C,則a-b>0⇒a>b”;

④“若x∈R,則|x|<1⇒-1<x<1”,類比推出“若z∈C,則|z|<1⇒-1<z<1”.

其中類比正確的為(  )

A.①② B.①④ C.①②③ D.②③④

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:6-1不等關系與不等式(解析版) 題型:解答題

已知關于x的不等式(ax-5)(x2-a)<0的解集為M.

(1)當a=4時,求集合M;

(2)當3∈M,且5∉M時,求實數(shù)a的取值范圍.

 

查看答案和解析>>

同步練習冊答案