【題目】已知函數(shù)g(x)=Acos(ωxφ)+B的部分圖象如圖所示,將函數(shù)g(x)的圖象保持縱坐標(biāo)不變,橫坐標(biāo)向右平移個(gè)單位長(zhǎng)度后得到函數(shù)f(x)的圖象.求:

(1)函數(shù)f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范圍.

【答案】(1) [0,3] (2)

【解析】

1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)gx)的解析式.再根據(jù)函數(shù)yAcosωx+φ+B的圖象的平移變換規(guī)律,可得fx)的解析式,再根據(jù)x[,],利用余弦函數(shù)的定義域和值域求得可得fx)的值域;

2)由fx)≥2可得 cos2x,故有2kπ2x2kπ,kz,由此求得不等式的解集.

(1)由圖知B=1,A=2,T=2()=π,

所以ω=2,所以g(x)=2cos(2xφ)+1.

把()代入,得2cos()+1=-1,

φ=π+2kπ(k∈Z),

所以φ=2kπ+ (k∈Z).

因?yàn)閨φ|<,所以φ,

所以g(x)=2cos(2x+)+1,

所以f(x)=2cos(2x-)+1.

因?yàn)?/span>x,所以2x

所以f(x)∈[0,3],即函數(shù)f(x)在上的值域?yàn)閇0,3].

(2)因?yàn)?/span>f(x)=2cos(2x-)+1,

所以2cos(2x-)+1≥2,

所以cos(2x-)≥

所以-+2kπ≤2x+2kπ(k∈Z),

所以kπ≤xkπ+(k∈Z),

所以使f(x)≥2成立的x的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體的棱長(zhǎng)為1,分別為的中點(diǎn).則( )

A.直線與直線垂直B.直線與平面平行

C.平面截正方體所得的截面面積為D.點(diǎn)和點(diǎn)到平面的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若時(shí),對(duì)任意的都成立,求實(shí)數(shù)的取值范圍;

2)求關(guān)于的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), .

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為2,點(diǎn)的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動(dòng)點(diǎn),則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】輪船在海上航行時(shí),需要借助無(wú)線電導(dǎo)航確認(rèn)自己所在的位置,以把握航向.現(xiàn)有、、三個(gè)無(wú)線電發(fā)射臺(tái),其中在陸地上,在海上,在某國(guó)海岸線上,(該國(guó)這段海岸線可以近似地看作直線的一部分),如下圖.已知兩點(diǎn)距離10千米,的中點(diǎn),海岸線與直線的夾角為.為保證安全,輪船的航路始終要滿足:接收到點(diǎn)的信號(hào)比接收到點(diǎn)的信號(hào)晚秒.(注:無(wú)線電信號(hào)每秒傳播千米).在某時(shí)刻,測(cè)得輪船距離點(diǎn)距離為4千米.

(1)以點(diǎn)為原點(diǎn),直線軸建立平面直角坐標(biāo)系(如圖),求出該時(shí)刻輪船的位置;

(2)根據(jù)經(jīng)驗(yàn),船只在距離海岸線1.5千米以內(nèi)的海域航行時(shí),有擱淺的風(fēng)險(xiǎn).如果輪船保持目前的航路不變,那么是否有擱淺風(fēng)險(xiǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為一個(gè)正方體與一個(gè)半球構(gòu)成的組合體,半球的底面圓與該正方體的上底面的四邊相切, 與正方形的中心重合.將此組合體重新置于一個(gè)球中(球未畫出),使該正方體的下底面的頂點(diǎn)均落在球的表面上,半球與球內(nèi)切,設(shè)切點(diǎn)為,若正四棱錐的表面積為,則球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】同時(shí)拋擲1角、5角和1元的三枚硬幣,計(jì)算:

(1)恰有一枚出現(xiàn)正面的概率;

(2)至少有兩枚出現(xiàn)正面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln x-.

(1)試討論f(x)在定義域上的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案