如圖,在直四棱柱中,已知,

(Ⅰ)求證:;
(Ⅱ)設(shè)上一點,試確定的位置,使平面,并說明理由.
(Ⅰ)先證 (Ⅱ)的中點

試題分析:(Ⅰ)證明:在直四棱柱中,連結(jié), 
四邊形是正方形. 

.又,,
平面,又平面,平面
平面,又平面,
(2)連結(jié),連結(jié),

設(shè),,連結(jié),
平面平面,要使平面,
須使,  又的中點.
的中點.又易知,.  
的中點.綜上所述,當(dāng)的中點時,可使平面
點評:熟練掌握線面平行、垂直的判定定理和性質(zhì)定理是解題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)中,,的中點
(I)求證:平面平面
(II)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱的所有棱長都為,且平面,中點.

(Ⅰ)求證:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為1,的中點,為線段上的動點,過點的平面截該正方體所得的截面記為,則下列命題正確的是         (寫出所有正確命題的編號)。

①當(dāng)時,為四邊形
②當(dāng)時,為等腰梯形
③當(dāng)時,的交點滿足
④當(dāng)時,為六邊形
⑤當(dāng)時,的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知:,,則的位置關(guān)系是( 。
A.B.
C.相交但不垂直D.,異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個不同的平面,則下列四個命題中,正確命題的個數(shù)是(   )
①若   ②若
③若  ④若
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知空間四邊形中,的中點.

(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點F,使得GF//平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點,M是線段上的動點。

(1)當(dāng)M在什么位置時,,請給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。

查看答案和解析>>

同步練習(xí)冊答案