【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的導(dǎo)函數(shù),若f(α)=0,f'(α)>0,且f(x)在區(qū)間[α, +α)上沒有最小值,則ω取值范圍是( )
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對任意n∈N*都成立,數(shù)列{an}的前n項(xiàng)和為Sn .
(1)若{an}是等差數(shù)列,求k的值;
(2)若a=1,k=﹣ ,求Sn;
(3)是否存在實(shí)數(shù)k,使數(shù)列{am}是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng)am , am+1 , am+2按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F(xiàn)分別是棱AB,BC,B1C1的中點(diǎn),G是棱BB1上的動(dòng)點(diǎn).
(1)當(dāng) 為何值時(shí),平面CDG⊥平面A1DE?
(2)求平面AB1F與平面AD1E所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅲ)在該商品進(jìn)貨量(噸)不超過6(噸)的前提下任取兩個(gè)值,求該商品進(jìn)貨量x(噸)恰有一個(gè)值不超過3(噸)的概率.
參考公式和數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)與雙曲線的焦點(diǎn)重合,并且經(jīng)過點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(II) 設(shè)橢圓C短軸的上頂點(diǎn)為P,直線不經(jīng)過P點(diǎn)且與相交于、兩點(diǎn),若直線PA與直線PB的斜率的和為,判斷直線是否過定點(diǎn),若是,求出這個(gè)定點(diǎn),否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=8x,圓M:(x﹣2)2+y2=4,點(diǎn)N為拋物線E上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),線段ON的中點(diǎn)P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點(diǎn)Q(x0 , y0)(x0≥5)是曲線C上的點(diǎn),過點(diǎn)Q作圓M的兩條切線,分別與x軸交于A,B兩點(diǎn),求△QAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.
(1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}前n項(xiàng)和為Sn , 且 (n∈N*).
(Ⅰ) 求c,an;
(Ⅱ) 若 ,求數(shù)列{bn}前n項(xiàng)和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com