A. | 命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0” | |
B. | 命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題 | |
C. | “p∧q為真命題”是“p∨q為真命題”的必要不充分條件 | |
D. | “a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分條件 |
分析 A.根據(jù)特稱命題的否定是全稱命題進行判斷.
B.根據(jù)三角函數(shù)的性質(zhì)進行判斷.
C根據(jù)充分條件和必要條件的定義進行判斷.
D.根據(jù)不等式的關(guān)系結(jié)合充分條件和必要條件的定義進行判斷即可.
解答 解:A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3≤0”,故A錯誤,
B.∵sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$恒成立,∴p是真命題,則¬p是假命題,故B錯誤,
C.若p∧q為真命題,則p,q都是真命題,此時p∨q為真命題,即充分性成立,反之當(dāng)p假q真時,p∨q為真命題,
但p∧q為假命題,故“p∧q為真命題”是“p∨q為真命題”的充分不必要條件,故C錯誤,
D.由${log_{\frac{1}{2}}}$a>0得0<a<1,
則“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分條件,正確,
故選:D.
點評 本題主要考查命題的真假判斷,涉及充分條件和必要條件,含有量詞的命題的否定,比較基礎(chǔ).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{10}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com