1.已知各頂點都在一個球面上的正四棱柱(側(cè)棱垂直于底面且底面為正方形的四棱柱)的高為2,這個球的表面積為6π,則這個正四棱柱的體積為( 。
A.1B.2C.3D.4

分析 根據(jù)棱柱的對角線等于球的直徑解出棱柱的底面邊長,從而可計算出棱柱的體積.

解答 解:設(shè)球的半徑為r,則4πr2=6π,∴r=$\frac{\sqrt{6}}{2}$,
∴球的直徑為2r=$\sqrt{6}$,
設(shè)正四棱柱的底面邊長為a,則$\sqrt{{a}^{2}+{a}^{2}+4}$=$\sqrt{6}$,
∴a=1,
∴正四棱柱的體積V=a2•2=2.
故選B.

點評 本題考查了球與棱柱的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個圓錐與一個球的體積相等,圓錐的底面半徑是球半徑的3倍,圓錐的高與球半徑之比為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對某交通要道以往的日車流量(單位:萬輛)進(jìn)行統(tǒng)計,得到如下記錄:
日車流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.250.350.250.100
將日車流量落入各組的頻率視為概率,并假設(shè)每天的車流量相互獨立.
(Ⅰ)求在未來連續(xù)3天里,有連續(xù)2天的日車流量都不低于10萬輛且另1天的日車流量低于5萬輛的概率;
(Ⅱ)用X表示在未來3天時間里日車流量不低于10萬輛的天數(shù),求X的分布列、數(shù)學(xué)期望以及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將兩顆骰子各擲一次,記事件A=“兩個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(B|A)等于( 。
A.$\frac{1}{3}$B.$\frac{11}{30}$C.$\frac{10}{11}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,z=2-3i,則$\frac{{{z^3}-1}}{\overline z}$在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.滿足不等式$\frac{{A}_{n}^{7}}{{A}_{n}^{5}}$>12的n的最小值為( 。
A.12B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=a2=$\frac{1}{2}$,an+1=2an+an-1(n∈N*,n≥2),則$\sum_{i=2}^{2017}{\frac{1}{{{a_{i-1}}{a_{i+1}}}}}$的整數(shù)部分是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知0<a<$\frac{1}{2}$,隨機(jī)變量ξ的分布列如下,則當(dāng)a增大時( 。
ξ-101
Pa$\frac{1}{2}$-a$\frac{1}{2}$
A.E(ξ)增大,D(ξ)增大B.E(ξ)減小,D(ξ)增大C.E(ξ)增大,D(ξ)減小D.E(ξ)減小,D(ξ)減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知ξ的分布列如下:
ζ1234
p$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{4}$
并且η=3ξ+1,則方差Dη=( 。
A.$\frac{179}{16}$B.$\frac{143}{16}$C.$\frac{179}{48}$D.$\frac{136}{48}$

查看答案和解析>>

同步練習(xí)冊答案