精英家教網 > 高中數學 > 題目詳情
平面與球O相交于周長為的⊙,A、B為⊙上兩點,若∠AOB=,且A、B的球面距離為,則的長度為(    )
A.1            B.         C.       D.2
A

試題分析:令球的半徑為R,則其過球心的截面(圓)的周長為,又因為A、B兩點的球面距離為,且∠AOB=,所以可得,解得。又由題意得,⊙的半徑為,所以由勾股定理得,的長度為。
點評:立體幾何空間想象能力要求較高。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知圓的方程為,直線過點,且與圓相切.
(1)求直線的方程;
(2)設圓軸交于兩點,是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點,直線交直線于點.求證:的外接圓總過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

一束光線從點A(-3,9)出發(fā)經x軸反射到圓C:(x-2)2+(y-3)2=1的最短路程是          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,的角平分線AD的延長線交它的外接圓于點E

(Ⅰ)證明:
(Ⅱ)若的面積,求的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過圓C:作一動直線交圓C于兩點A、B,過坐標原點O作直線ON⊥AM于點N,過點A的切線交直線ON于點Q,則=      (用R表示)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓,直線被圓所截得的弦的中點為P(5,3).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(文)(本題滿分12分)已知圓軸相切,圓心在直線上,且被直線截得的弦長為,求圓的標準方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知圓C與圓(x-1)2+y2=1關于直線y=-x對稱,則圓C的方程(    )
A.(x+1)2+y2=1B.x2+y2=1
C.x2+(y+1)2=1D.x2+(y-1)2=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知直線,圓.
(Ⅰ)證明:對任意,直線恒過一定點N,且直線與圓C恒有兩個公共點;
(Ⅱ)設以CN為直徑的圓為圓D(D為CN中點),求證圓D的方程為:
(Ⅲ)設直線與圓的交于A、B兩點,與圓D:交于點(異于C、N),當變化時,求證為AB的中點.

查看答案和解析>>

同步練習冊答案