(本小題13分)
設(shè)等比數(shù)列 的前項(xiàng)和為,首項(xiàng),公比
(I)證明:;
(II)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式;
(III)記,,數(shù)列的前項(xiàng)和為,求證:當(dāng)時(shí),

(1)見解析(2)(3)見解析

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;

(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;

(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十排列、組合、二項(xiàng)式定理 題型:解答題

(本小題滿分13分)

    品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試。根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評為。

    現(xiàn)設(shè),分別以表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號,并令

,

是對兩次排序的偏離程度的一種描述。

    (Ⅰ)寫出的可能值集合;

(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;

(Ⅲ)某品酒師在相繼進(jìn)行的三輪測試中,都有,

(i)試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨(dú)立);

(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(安徽卷)數(shù)學(xué)試題(理科) 題型:解答題

(本小題滿分13分)

    品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試。根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評為。

    現(xiàn)設(shè),分別以表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號,并令

是對兩次排序的偏離程度的一種描述。

    (Ⅰ)寫出的可能值集合;

(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;

(Ⅲ)某品酒師在相繼進(jìn)行的三輪測試中,都有,

(i)試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨(dú)立);

(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)文(重慶卷)解析版 題型:解答是:本大題

 (本小題滿分13分,(Ⅰ)小問6分,(Ⅱ)小問7分.)某市公租房的房源位于、、三個片區(qū).設(shè)每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的.求該市的4位申請人中:

(Ⅰ)沒有人申請A片區(qū)房源的概率;

(Ⅱ)每個片區(qū)的房源都有人申請的概率.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(重慶卷)解析版 題型:解答題

 (本小題滿分13分。(Ⅰ)小問5分(Ⅱ)小問8分.)

某市公租房房屋位于A.B.C三個地區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房屋,且申請其中任一個片區(qū)的房屋是等可能的,求該市的任4位申請人中:

(Ⅰ)若有2人申請A片區(qū)房屋的概率;

(Ⅱ)申請的房屋在片區(qū)的個數(shù)的分布列與期望。

 

 

 

查看答案和解析>>

同步練習(xí)冊答案