數(shù)列{an}的前n項(xiàng)和Sn=n2-4n+2,則|a1|+|a2|+…+|a10|=________.
66
當(dāng)n=1時(shí),a1=S1=-1.
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n-5.

令2n-5≤0,得n≤,
∴當(dāng)n≤2時(shí),an<0,當(dāng)n≥3時(shí),an>0,
∴|a1|+|a2|+…+|a10|=-(a1+a2)+(a3+a4+…+a10)=S10-2S2=66.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=1,S11=33.
(1)求{an}的通項(xiàng)公式;
(2)設(shè),求證:數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是首項(xiàng)的遞增等差數(shù)列,為其前項(xiàng)和,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足為數(shù)列的前n項(xiàng)和.若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若等比數(shù)列的前n項(xiàng)和,(1)求實(shí)數(shù)的值;(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列滿足
(1)求;
(2)由(1)猜想的一個(gè)通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論;(本題滿分13分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)是定義在R上不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)a,b∈R,滿足:
(ab)= a(b)+b(a), (2)="2," an=(n∈N*), bn=(n∈N*).
考察下列結(jié)論: ①(0)= (1); ②(x)為偶函數(shù); ③數(shù)列{an}為等比數(shù)列; ④數(shù)列{bn}為等差數(shù)列.其中正確的結(jié)論共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是等差數(shù)列,其中,前四項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式an; 
(2)令,①求數(shù)列的前項(xiàng)之和
是不是數(shù)列中的項(xiàng),如果是,求出它是第幾項(xiàng);如果不是,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列滿足
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案