【題目】在極坐標系中,已知曲線:和曲線:,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.
(1)求曲線和曲線的直角坐標方程;
(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.
【答案】(1)的直角坐標方程為,的直角坐標方程為.(2).
【解析】
(1)極坐標方程化為直角坐標方程可得的直角坐標方程為,的直角坐標方程為.
(2)由幾何關(guān)系可得直線的參數(shù)方程為(為參數(shù)),據(jù)此可得,,結(jié)合均值不等式的結(jié)論可得當且僅當時,線段長度取得最小值為.
(1)的極坐標方程即,則其直角坐標方程為,
整理可得直角坐標方程為,
的極坐標方程化為直角坐標方程可得其直角坐標方程為.
(2)設(shè)曲線與軸異于原點的交點為,
∵,∴過點,
設(shè)直線的參數(shù)方程為(為參數(shù)),
代入可得,解得或,
可知,
代入可得,解得,
可知,
所以,
當且僅當時取等號,
所以線段長度的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某外商到一開發(fā)區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經(jīng)費12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元。設(shè)表示前年的純收入(前年的總收入一前年的總支出一投資額)
(1)試寫出的關(guān)系式.
(2) 該開發(fā)商從第幾年開始獲利?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學屆的震動。在1859年的時候,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路段汽車的車流量y(千輛/小時)與汽車的平均速度v(千米/小時)之間的函數(shù)關(guān)系為:().
(1)在該時段內(nèi),當汽車的平均速度為多少時,車流量最大?最大車流量為多少?(保留分數(shù)形式)
(2)若要求在該時段內(nèi)車流量超過10千輛/小時,則汽車的平均速度應在什么范用內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點,求實數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)將甲、乙兩個學生在高二的6次數(shù)學測試的成績(百分制)制成如圖所示的莖葉圖,進人高三后,由于改進了學習方法,甲、乙這兩個學生的考試數(shù)學成績預計同時有了大的提升.若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應的考試成績預計為(若>100.則取為100).若已知甲、乙兩個學生的高二6次考試成績分別都是由低到高進步的,定義為高三的任意一次考試后甲、乙兩個學生的當次成績之差的絕對值.
(I)試預測:在將要進行的高三6次測試中,甲、乙兩個學生的平均成績分別為多少?(計算結(jié)果四舍五入,取整數(shù)值)
(Ⅱ)求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各對事件中,不互為相互獨立事件的是( )
A.擲一枚骰子一次,事件“出現(xiàn)偶數(shù)點”;事件“出現(xiàn)3點或6點”
B.袋中有3白、2黑共5個大小相同的小球,依次有放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到白球”
C.袋中有3白、2黑共5個大小相同的小球,依次不放回地摸兩球,事件“第一次摸到白球”,事件“第二次摸到黑球”
D.甲組3名男生,2名女生;乙組2名男生,3名女生,現(xiàn)從甲、乙兩組中各選1名同學參加演講比賽,事件“從甲組中選出1名男生”,事件“從乙組中選出1名女生”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,,,點在平而內(nèi)的射影為
(1)證明:四邊形為矩形;
(2)分別為與的中點,點在線段上,已知平面,求的值.
(3)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com