15.已知集合N={x|$\frac{1}{2}$<2x+1<4,x∈R},M={x|x2+3x+2≤0,x∈R},則M∩N( 。
A.(-2,1)B.(-2,-1)C.(-2,-1]D.[-2,-1]

分析 求出M與N中不等式的解集,分別確定出兩集合,求出兩集合的交集即可.

解答 解:由M中不等式變形得:(x+1)(x+2)≤0,
解得:-2≤x≤-1,即M=[-2,-1],
由N中不等式變形得:2-1<2x+1<22,即-1<x+1<2,
解得:-2<x<1,即N=(-2,1),
則M∩N=(-2,-1],
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:填空題

在一次連環(huán)交通事故中,只有一個人需要負主要責任,但在警察詢問時,甲說:“主要責任在乙”;乙說:“丙應(yīng)負主要責任”;丙說“甲說的對”;丁說:“反正我沒有責任”.四人中只有一個人說的是真話,則該事故中需要負主要責任的人是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為了得到函數(shù)y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinxcosx的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{3}$個單位
C.向左平移$\frac{π}{6}$個單位D.向右平移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.正項等比數(shù)列{an}滿足:a3=a2+2a1,若存在am,an,使得am•an=64a${\;}_{1}^{2}$,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=1+$\frac{2x+sinx}{{{x^2}+1}}$,若f(x)的最大值和最小值分別為M和N,則M+N等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(1-x)(1+x)6的展開式中x3系數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合M={0,1,2,5,6,7},N={2,3,5,7},若P=M∩N,則P的真子集個數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn
(I)求數(shù)列{an},{bn}的通項公式;
(II)記cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.數(shù)列{an}的各項全為正數(shù),且在如圖所示的算法框圖圖中,已知輸入k=2時,輸出$S=\frac{1}{3}$;輸入k=5時,輸出$S=\frac{4}{9}$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案