(2011•淄博二模)已知△ABC中,a=3,b=1,C=30°,則
BC
CA
=(  )
分析:確定<
BC
,
CA
>=150°,利用向量的數(shù)量積公式,即可得出結(jié)論.
解答:解:∵C=30°,∴<
BC
,
CA
>=150°,
∵a=3,b=1,
BC
CA
=3•1•cos150°=-
3
3
2

故選B.
點(diǎn)評(píng):本題考查向量的數(shù)量積公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為5
2

(1)求此時(shí)橢圓C的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓C相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,
3
3
)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)3x+y的最大值為7,最小值為1,則
a+b+c
a
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若
m
=(sin2
B+C
2
,1),
n
=(cos2A+
7
2
,4),且
m
n

(Ⅰ)求角A;
(Ⅱ)當(dāng)a=
3
,S△ABC=
3
2
時(shí),求邊長b和角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•淄博二模)一個(gè)多面體的三視圖及直觀圖如圖所示:
(Ⅰ)求異面直線AB1與DD1所成角的余弦值:
(Ⅱ)試在平面ADD1A1中確定一個(gè)點(diǎn)F,使得FB1⊥平面BCC1B1;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-CC1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案