甲、乙兩人玩猜數(shù)字游戲,規(guī)則如下:
①連續(xù)競猜3次,每次相互獨(dú)立;
②每次競猜時,先由甲寫出一個數(shù)字,記為a,再由乙猜甲寫的數(shù)字,記為b,已知ab∈{0,1,2,3,4,5},若|ab|≤1,則本次競猜成功;
③在3次競猜中,至少有2次競猜成功,則兩人獲獎.
求甲乙兩人玩此游戲獲獎的概率.
由題意基本事件的總數(shù)為×=36(個),記事件A為“甲乙兩人一次競猜成功”,若|ab|=0,則共有6種競猜成功;若|ab|=1,a=1,2,3,4時,b分別有2個值;而a=0或5時,b只有一種取值.
利用古典概型的概率計(jì)算公式即可得出P(A)=.
設(shè)隨機(jī)變量X表示在3次競猜中競猜成功的次數(shù),則甲、乙兩人獲獎的概率P(X≥2)=1-P(X=0)-P(X=1)=1-×0312.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息
汽車行駛路線
在不堵車的情況下到達(dá)城市乙所需時間(天)
在堵車的情況下到達(dá)城市乙所需時間(天)
堵車的概率
運(yùn)費(fèi)(萬元)
公路1
2
3

1.6
公路2
1
4

0.8
(I)記汽車選擇公路1運(yùn)送牛奶時牛奶廠獲得的毛收入為(單位:萬元),求的分布列和數(shù)學(xué)期望;
(II)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

氣象部門提供了某地今年六月份(30天)的日最高氣溫的統(tǒng)計(jì)表如下:
日最高氣溫t (單位:℃)
t22℃
22℃< t28℃
28℃< t  32℃

天數(shù)
6
12


由于工作疏忽,統(tǒng)計(jì)表被墨水污染,數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.
(Ⅰ) 若把頻率看作概率,求,的值;
(Ⅱ) 把日最高氣溫高于32℃稱為本地區(qū)的 “高溫天氣”,根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此你是否有95%的把握認(rèn)為本地區(qū)的“高溫天氣”與西瓜“旺銷”有關(guān)?說明理由.
 
高溫天氣
非高溫天氣
合計(jì)
旺銷
1
 
 
不旺銷
 
6
 
合計(jì)
 
 
 
附:  

0.10
0.050
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

1號箱中有2個白球和4個紅球,2號箱中有5個白球和3個紅球,現(xiàn)隨機(jī)地從1號箱中取出一球放入2號箱,然后從2號箱隨機(jī)取出一球,則從2號箱取出紅球的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

連擲兩次骰子得到的點(diǎn)數(shù)分別為mn,記向量a=(mn)與向量b=(1,-1)的夾角為θ.則θ的概率是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個,已知從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個球,記第一次取出小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.①記“ab=2”為事件A,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實(shí)數(shù)xy,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

連續(xù)向一目標(biāo)射擊,直至擊中為止,已知一次射擊命中目標(biāo)的概率為則射擊次數(shù)為3的概率為   (  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列敘述隨機(jī)事件的頻率與概率的關(guān)系中,說法正確的是(  )
A.頻率就是概率
B.頻率是客觀存在的,與試驗(yàn)次數(shù)無關(guān)
C.隨著試驗(yàn)次數(shù)的增多,頻率越來越接近概率
D.概率是隨機(jī)的,在試驗(yàn)前不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果隨機(jī)變量XN(-1,σ2),且P(-3≤X≤-1)=0.4,則P(X≥1)=(  )
A.0.4 B.0.3C.0.2 D.0.1

查看答案和解析>>

同步練習(xí)冊答案