設(shè)h(x)=數(shù)學(xué)公式,x∈(-1,1)試判斷函數(shù)h(x)的單調(diào)性,并用函數(shù)單調(diào)性定義,給出證明.

解:h(x)的定義域?yàn)椋?1,1)
判斷h(x)在(-1,1)上是增函數(shù),下證明之:
設(shè)任x1,x2∈(-1,1)且x1<x2
∵h(yuǎn)(x2)-h(x1)=-=
x1,x2∈(-1,1)且x1<x2
∴x2-x1>0,2-x1>0,2-x2>0
則=>0
∴h(x2)-h(x1)>0,即h(x2)>h(x1
根據(jù)單調(diào)增函數(shù)的定義可知h(x)在(-1,1)上是增函數(shù).
分析:先判斷出h(x)在(-1,1)上的單調(diào)性,取值作差,通分化簡(jiǎn)判定出符號(hào),再根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判定即可.
點(diǎn)評(píng):本題主要考查了函數(shù)單調(diào)性的判斷與證明,以及分式函數(shù)符號(hào)的判定,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)=
x
+1
,函數(shù)h(x)=
1
x+3
,x∈(-3,a]
,其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)•h(x).
(1)求函數(shù)f(x)的表達(dá)式,并求其定義域;
(2)當(dāng)a=
1
4
時(shí),求函數(shù)f(x)的值域;
(3)是否存在自然數(shù)a,使得函數(shù)f(x)的值域恰為[
1
3
,
1
2
]
?若存在,試寫出所有滿足條件的自然數(shù)a所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫出h(4x)的定義域;
(文)m=1時(shí),直接寫出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當(dāng)m=1時(shí),設(shè)M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義非零向量
OM
=(a,b)
的“相伴函數(shù)”為f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
稱為函數(shù)f(x)=asinx+bcosx的“相伴向量”(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求證:h(x)∈S;
(2)求(1)中函數(shù)h(x)的“相伴向量”模的取值范圍;
(3)已知點(diǎn)M(a,b)(b≠0)滿足:(a-
3
)2+(b-1)2=1
上一點(diǎn),向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省紹興市諸暨中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知a,b是正實(shí)數(shù),設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)設(shè)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x,使x∈[]且f(x)≤g(x)成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北大附中河南分校高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知a,b是正實(shí)數(shù),設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb.
(Ⅰ)設(shè)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(Ⅱ)若存在x,使x∈[,]且f(x)≤g(x)成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案