精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

(1)若,解不等式;

(2)若存在實數,使得不等式成立,求實數的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)由絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)先化簡不等式為|3x﹣a|﹣|3x+6|≥1﹣a,再根據絕對值三角不等式得|3x﹣a|﹣|3x+6|最大值為|a+6|,最后解不等式得實數的取值范圍

試題解析:解:(1)a=2時:f(x)=|3x﹣2|﹣|x+2|≤3,

解得:﹣≤x≤;

(2)不等式f(x)≥1﹣a+2|2+x|成立,

即|3x﹣a|﹣|3x+6|≥1﹣a,

由絕對值不等式的性質可得||3x﹣a|﹣|3x+6||≤|(3x﹣a)﹣(3x+6)|=|a+6|,

即有f(x)的最大值為|a+6|,

,

解得:a≥﹣

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交警隨機抽取了途徑某服務站的40輛小型轎車在經過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為后得到如圖所示的頻率分布直方圖.

(1)某小型轎車途經該路段,其速度在以上的概率是多少?

(2)若對車速在兩組內進一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若,解不等式;

(2)若存在實數,使得不等式成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地最近十年對某商品的需求量逐年上升,下表是部分統(tǒng)計數據:

年份

2008

2010

2012

2014

2016

需要量(萬件)

236

246

257

276

286


(1)利用所給數據求年需求量y與年份x之間的回歸直線方程 = x+ ;
(2)預測該地2018年的商品需求量(結果保留整數).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l的斜率為k,經過點(1,﹣1),將直線向右平移3個單位,再向上平移2個單位,得到直線m,若直線m不經過第四象限,則直線l的斜率k的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】要測量底部不能到達的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為(
A.40m
B.20m
C.305m
D.(20 ﹣40)m

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,設命題p:橢圓C: + =1的焦點在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點. 若命題p、命題q中有且只有一個為真命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l經過直線3x+4y﹣2=0與直線2x+y+2=0的交點P,且垂直于直線x﹣2y﹣1=0.
(1)求直線l的方程;
(2)求直線l關于原點O對稱的直線方程.

查看答案和解析>>

同步練習冊答案