【題目】已知上的偶函數(shù),當(dāng)時(shí), .對(duì)于結(jié)論

(1)當(dāng)時(shí), ;(2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為4,5,7;

(3)若,關(guān)于的方程有5個(gè)不同的實(shí)根,則

(4)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是.

說(shuō)法正確的序號(hào)是__________.

【答案】(2)(3)

【解析】對(duì)于(1),上的偶函數(shù),當(dāng)時(shí), .

時(shí), ;所以(1)錯(cuò)誤;

對(duì)于(2),,令,則,解得: ,從而,

,則可得到, ,五個(gè)零點(diǎn);

,同上也是五個(gè)根;

,可得到,或0,進(jìn)而得到,七個(gè)零點(diǎn);

等于其它值,只有四個(gè)零點(diǎn);

∴(2)正確;

對(duì)于(3),由代入,解得: ,經(jīng)檢驗(yàn)適合題意;

對(duì)于(4),當(dāng)時(shí), ,解得: ,即,或,由特例不難發(fā)現(xiàn)不適合題意,故(4)錯(cuò)誤

綜上:正確的序號(hào)是(2)(3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況統(tǒng)計(jì)如下表:(單位:人)

立體幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計(jì)得,選擇做立體幾何題的學(xué)生正答率為,且答對(duì)的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯(cuò)的學(xué)生中任意抽取兩人對(duì)他們的答題情況進(jìn)行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程的根的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中, ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線上的動(dòng)點(diǎn)滿足到點(diǎn)的距離比到直線的距離小1.

(1)求曲線的方程;

(2)動(dòng)點(diǎn)在直線上,過(guò)點(diǎn)分別作曲線的切線,切點(diǎn)為.直線是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求過(guò)點(diǎn)且與曲線相切的直線方程;

(Ⅱ)設(shè),其中為非零實(shí)數(shù),若有兩個(gè)極值點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出四種說(shuō)法:

①用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過(guò)樣本點(diǎn)的中心( ).

其中正確的說(shuō)法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側(cè)面BB1C1C,ABBC1BB12,∠BCC160°。

)求證:C1B⊥平面ABC

)設(shè)0≤λ≤1),且平面AB1EBB1E所成的銳二面角的大小為30°,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來(lái)自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:

甲是中國(guó)人,還會(huì)說(shuō)英語(yǔ).

乙是法國(guó)人,還會(huì)說(shuō)日語(yǔ).

丙是英國(guó)人,還會(huì)說(shuō)法語(yǔ).

丁是日本人,還會(huì)說(shuō)漢語(yǔ).

戊是法國(guó)人,還會(huì)說(shuō)德語(yǔ).

則這五位代表的座位順序應(yīng)為( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

同步練習(xí)冊(cè)答案