【題目】為了研究某學(xué)科成績(滿分100分)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了30名男生和20名女生的該學(xué)科成績,得到下圖所示女生成績的莖葉圖.其中抽取的男生中有21人的成績在80分以下,規(guī)定80分以上為優(yōu)秀(含80分).
(1)請根據(jù)題意,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(2)據(jù)此列聯(lián)表判斷,是否有90%的把握認(rèn)為該學(xué)科成績與性別有關(guān)?
附: ,其中.
參考數(shù)據(jù) | 當(dāng)≤2.706時,無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián); |
當(dāng)>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián); | |
當(dāng)>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián). |
【答案】(1)見解析;(2)有關(guān).
【解析】試題分析:
(1)利用題意確定各個性別優(yōu)秀的人數(shù),據(jù)此即可補(bǔ)充完整列聯(lián)表;
(2)結(jié)合(1)中的列聯(lián)表求得,因此有90%的把握認(rèn)為該學(xué)科成績與性別有關(guān).
試題解析:
(1)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整如下:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | 9 | 21 | 30 |
女生 | 11 | 9 | 20 |
總計 | 20 | 30 | 50 |
(2)根據(jù)列聯(lián)表可以求得
因此有90%的把握認(rèn)為該學(xué)科成績與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.
(1)若λ=0,求f(x)的最大值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017銀川一中高考模擬文】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點(diǎn),分別為線段、的中點(diǎn),、分別為線段、上一點(diǎn),且,.
(1)確定點(diǎn)的位置,使得平面;
(2)試問:直線上是否存在一點(diǎn),使得平面與平面所成銳二面角的大小為,若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下頻數(shù)分布直方圖:
該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的頻率;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;
(ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計劃在正方MNPQ上建一座花壇,造價是每平方米4 200元,在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價是每平方米210元,再在四個空角上鋪上草坪,造價是每平方米80元.
(1)設(shè)總造價是S元,AD長為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時,S最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在甲、乙兩地的兩個分廠各生產(chǎn)某種機(jī)器12臺和6臺. 現(xiàn)銷售給A地10臺,B地8臺. 已知從甲地調(diào)運(yùn)1臺至A地、B地的運(yùn)費(fèi)分別為400元和800元,從乙地調(diào)運(yùn)1臺至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從甲地調(diào)運(yùn)x臺至A地,求總費(fèi)用y關(guān)于臺數(shù)x的函數(shù)解析式;
(2)若總運(yùn)費(fèi)不超過9 000元,問共有幾種調(diào)運(yùn)方案;
(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足 , 是數(shù)列的前項和.
(1)求數(shù)列的通項公式;
(2)令,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com