19.一個正三棱柱的側(cè)棱長和底面邊長都相等,它的俯視圖如圖所示,左視圖是一個矩形,棱柱的體積為2$\sqrt{3}$,則這個三棱柱的表面積為(  )
A.2$\sqrt{3}$B.12C.2$\sqrt{3}$+12D.2$\sqrt{3}$+6

分析 通過正三棱柱的體積,求出正三棱柱的高,棱長,進而可得答案.

解答 解:一個正三棱柱的側(cè)棱長和底面邊長相等,體積為2$\sqrt{3}$,
設高為:x,所以$\frac{\sqrt{3}}{4}$x3=2$\sqrt{3}$,
解得:x=2,

故這個三棱柱的表面積為:(3+$\frac{\sqrt{3}}{2}$)x2=2$\sqrt{3}$+12,
故選:C

點評 本題考查的知識點是棱柱的體積和表面積,簡單幾何體的三視圖,方程思想,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)面PBC是直角三角形,∠PCB=90°,點E是PC的中點,且平面PBC⊥平面ABCD.
求證:
(1)AP∥平面BED;
(2)BD⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某單位生產(chǎn)A、B兩種產(chǎn)品,需要資金和場地,生產(chǎn)每噸A種產(chǎn)品和生產(chǎn)每噸B種產(chǎn)品所需資金和場地的數(shù)據(jù)如表所示:
資源
產(chǎn)品
資金(萬元)場地(平方米)
A2100
B3550
現(xiàn)有資金12萬元,場地400平方米,生產(chǎn)每噸A種產(chǎn)品可獲利潤3萬元;生產(chǎn)每噸B種產(chǎn)品可獲利潤2萬元,分別用x,y表示計劃生產(chǎn)A、B兩種產(chǎn)品的噸數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(2)問A、B兩種產(chǎn)品應各生產(chǎn)多少噸,才能產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求過點P(-1,5)的圓(x-1)2+(y-2)2=4的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.方程xy2+x2y=1所表示的曲線( 。
A.關于x軸對稱B.關于y軸對稱C.關于原點對稱D.關于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,四棱錐S-ABCD的底面是邊長為1的正方形,SD垂直于底面ABCD,SD=1,SB=$\sqrt{3}$.
(I)求證BC⊥SC; 
(Ⅱ)求平面SBC與平面ABCD所成二面角的大小;
(Ⅲ)設棱SA的中點為M,求異面直線DM與SB所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{7}{8}$,且an+1=$\frac{1}{2}$an+$\frac{1}{3}$,n∈N*
(1)求證:{an-$\frac{2}{3}$}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積是(  )
A.2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知A={y|y=x+1},B=(x,y)|x2+y2=1},則集合A∩B中元素的個數(shù)為0.

查看答案和解析>>

同步練習冊答案