【題目】已知拋物線(xiàn)C經(jīng)過(guò)點(diǎn),A,B是拋物線(xiàn)C上異于點(diǎn)O的不同的兩點(diǎn),其中O為原點(diǎn).

1)求拋物線(xiàn)C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線(xiàn)方程;

2)若,求面積的最小值.

【答案】(1)拋物線(xiàn)C的方程為.焦點(diǎn)坐標(biāo)為,準(zhǔn)線(xiàn)方程為(2)面積的最小值為4

【解析】

1)根據(jù)題意,將P的坐標(biāo)代入拋物線(xiàn)的方程,可得p的值,即可得拋物線(xiàn)的標(biāo)準(zhǔn)方程,分析即可得答案;

2)直線(xiàn)AB的方程為,與拋物線(xiàn)的方程聯(lián)立,可得,設(shè),結(jié)合,結(jié)合根與系數(shù)的關(guān)系分析可得,進(jìn)而可得面積的表達(dá)式,分析可得答案.

解:(1)由拋物線(xiàn)C經(jīng)過(guò)點(diǎn),解得

則拋物線(xiàn)C的方程為

拋物線(xiàn)C的焦點(diǎn)坐標(biāo)為,準(zhǔn)線(xiàn)方程為;

2)由題知,直線(xiàn)AB不與y軸垂直,設(shè)直線(xiàn)AB

消去x,得

設(shè),則,

因?yàn)?/span>,所以,即,

解得(舍去)或

所以解得

所以直線(xiàn)AB

所以直線(xiàn)AB過(guò)定點(diǎn)

當(dāng)且僅當(dāng),時(shí),等號(hào)成立.

所以面積的最小值為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若曲線(xiàn)在它們的交點(diǎn)處有相同的切線(xiàn),求實(shí)數(shù)a,b的值;

(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為正方形,分別為的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

(1)證明:平面平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車(chē)、共享汽車(chē)之后,共享房屋以“民宿”、“農(nóng)家樂(lè)”等形式開(kāi)始在很多平臺(tái)上線(xiàn).某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂(lè)”,為了確定未來(lái)發(fā)展方向,此創(chuàng)業(yè)者對(duì)該景區(qū)附近六家“農(nóng)家樂(lè)”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農(nóng)家樂(lè)”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過(guò)的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列;

(2)令,由散點(diǎn)圖判斷哪個(gè)更合適于此模型(給出判斷即可,不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))

(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷(xiāo)售額最大?(年銷(xiāo)售額入住率收費(fèi)標(biāo)準(zhǔn)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知曲線(xiàn)C的極坐標(biāo)方程為ρ1-cos2θ=8cosθ,直線(xiàn)ρcosθ=1與曲線(xiàn)C相交于MN兩點(diǎn),直線(xiàn)l過(guò)定點(diǎn)P2,0)且傾斜角為αl交曲線(xiàn)CA,B兩點(diǎn).

1)把曲線(xiàn)C化成直角坐標(biāo)方程,并求|MN|的值;

2)若|PA|,|MN|,|PB|成等比數(shù)列,求直線(xiàn)l的傾斜角α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為、,左右頂點(diǎn)分別是、,長(zhǎng)軸長(zhǎng)為是以原點(diǎn)為圓心,為半徑的圓的任一條直徑,四邊形的面積最大值為.

(1)求橢圓的方程;

(2)不經(jīng)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于、兩點(diǎn),

①若直線(xiàn)的斜率分別為,,且,求證:直線(xiàn)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

②若直線(xiàn)的斜率是直線(xiàn)、斜率的等比中項(xiàng),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線(xiàn)的距離的比是常數(shù),若過(guò)的動(dòng)直線(xiàn)與曲線(xiàn)相交于兩點(diǎn)

(1)說(shuō)明曲線(xiàn)的形狀,并寫(xiě)出其標(biāo)準(zhǔn)方程;

(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DC⊥平面ABC,,,,P、Q分別為AE,AB的中點(diǎn).

(1)證明:平面.

(2)求異面直線(xiàn)所成角的余弦值;

(3)求平面與平面所成銳二面角的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案