分析 (1)根據(jù)條件建立方程組進行求解即可.
(2)根據(jù)不等式的關系,先判斷函數(shù)f(x)的單調(diào)性,轉化為最值恒成立即可得到結論.
解答 解:(Ⅰ)依題意得:$\left\{\begin{array}{l}{{a}^{2}+c=1}\\{{a}^{4}+c=73}\end{array}\right.$,----------------------------(1分)
∴a4-a2-72=0,----------------------------(2分)
則(a2-9)(a2+8)=0,----------------------------(3分)
則a2=9,得a=3,---------------------------(4分)
∴c=-8,則f(x)=3x-8.----------------------------(5分)
(Ⅱ)任取-1≤x1<x2≤1,
則f(x1)-f(x2)=2${\;}^{{x}_{1}}$+bx1+c-(2${\;}^{{x}_{2}}$+bx2+c)=(2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$)+b(x1-x2)----------------------------(6分)
又∵2${\;}^{{x}_{1}}$<2${\;}^{{x}_{2}}$,b≥0,x1-x2<0------------------------------------------(7分)
∴(2${\;}^{{x}_{1}}$-2${\;}^{{x}_{2}}$)+b(x1-x2)<0---------------------------,
即f(x1)-f(x2)<0,
∴f(x1)<f(x2),
函數(shù)f(x)在[-1,1]上單調(diào)遞增,-------------------(8分)
則函數(shù)的最大值f(1)=2+b+c,最小值f(-1)=$\frac{1}{2}$-b+c,---------------(9分)
若對任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,則需滿足|f(1)-f(-1)|≤4------------------------(10分)
∴|2b+$\frac{3}{2}$|≤4,得-4≤2b+$\frac{3}{2}$≤4,得-$\frac{11}{4}$≤b≤$\frac{5}{4}$,-----------------------(11分)
又b≥0,則0≤b≤$\frac{5}{4}$.----------------------------(12分)
點評 本題主要考查函數(shù)解析式的求解以及不等式恒成立問題,利用待定系數(shù)法是解決本題的關鍵.考查學生的計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | lg(x2+$\frac{1}{4}$)>lgx(x>0) | B. | x2+1≥2|x|(x∈R) | ||
C. | sin x+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z) | D. | $\frac{1}{{x}^{2}+1}$>1(x∈R) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{7}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{78}{71}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20 | B. | 31 | C. | 23 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com