【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.
【答案】
(1)解:∵f′(x)= ,f′(1)=﹣15,f(1)=﹣14,
∴曲線y=f(x)在點(1,f(1))處的切線方程為:y﹣14=﹣15(x﹣1),即y=﹣15x+1;
(2)解:令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x﹣1=2lnx﹣ax2+(2﹣2a)x﹣1,
∴g′(x)= .
當(dāng)a≤0時,∵x>0,∴g′(x)>0,則g(x)是(0,+∞)上的遞增函數(shù).
又g(1)=﹣a+2﹣2a﹣1=1﹣3a>0,∴不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1不恒成立;
當(dāng)a>0時,g′(x)= .
令g′(x)=0,得x= ,∴當(dāng)x∈(0, )時,g′(x)>0;當(dāng)x∈( ,+∞)時,g′(x)<0.
因此,g(x)在(0, )上是增函數(shù),在( ,+∞)上是減函數(shù).
故函數(shù)g(x)的最大值為g( )= ≤0.
令h(a)= .
則h(a)在(0,+∞)上是減函數(shù),
∵h(yuǎn)(1)=﹣2<0,
∴當(dāng)a≥1時,h(a)<0,∴整數(shù)a的最小值為1.
【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),得到f′(1),進(jìn)一步求出f(1),代入直線方程的點斜式,化簡可得曲線y=f(x)在點(1,f(1))處的切線方程;(2)令g(x)=f(x)﹣(a﹣3)x2﹣(2a﹣13)x﹣1=2lnx﹣ax2+(2﹣2a)x﹣1,求其導(dǎo)函數(shù)g′(x)= .可知當(dāng)a≤0時,g(x)是(0,+∞)上的遞增函數(shù).結(jié)合g(1)>0,知不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1不恒成立;當(dāng)a>0時,g′(x)= .求其零點,可得g(x)在(0, )上是增函數(shù),在( ,+∞)上是減函數(shù).得到函數(shù)g(x)的最大值為g( )= ≤0.令h(a)= .由單調(diào)性可得h(a)在(0,+∞)上是減函數(shù),結(jié)合h(1)<0,可得整數(shù)a的最小值為1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在 上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中m為實數(shù).
(Ⅰ)若函數(shù)f(x)在(1,f(1))處的切線方程為3x+3y﹣4=0,求m的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+1+a( ≤x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對稱的點,則實數(shù)a的取值范圍是( )
A.[0,e3﹣4]
B.[0, +2]
C.[ +2,e3﹣4]
D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列四個說法: ① ;
②函數(shù)f(x)的周期為π;
③f(x)在區(qū)間 上單調(diào)遞增;
④f(x)的圖象關(guān)于點 中心對稱
其中正確說法的序號是( )
A.②③
B.①③
C.①④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點F,G分別是線段PB,PD上的中點,E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線C2:ρ=(ρcosθ+4)cosθ.以極點為坐標(biāo)原點,極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為 (t為參數(shù)). (Ⅰ)求C1 , C2的直角坐標(biāo)方程;
(Ⅱ)C與C1 , C2交于不同四點,這四點在C上的排列順次為H,I,J,K,求||HI|﹣|JK||的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com