【題目】已知函數(shù)f(x)=ax﹣lnx,g(x)=ex﹣ax,其中a為正實(shí)數(shù),若f(x)在(1,+∞)上無(wú)最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍為

【答案】[1,e]
【解析】解:∵f(x)=ax﹣lnx,(x>0),
f′(x)=a﹣ =
若f(x)在(1,+∞)上無(wú)最小值,
則f(x)在(1,+∞)單調(diào),
∴f′(x)≥0在(1,+∞)上恒成立,
或f′(x)≤0在(1,+∞)上恒成立,
∴a≥ ,或a≤ ,而函數(shù)y= 在(1,+∞)上單調(diào)減,
∴x=1時(shí),函數(shù)y取得最大值1,
∴a≥1或a≤0,而a為正實(shí)數(shù),
故a≥1①,
又∵g(x)=ex﹣ax,
∴g′(x)=ex﹣a,
∵函數(shù)g(x)=ex﹣ax在區(qū)間(1,+∞)上單調(diào)遞增,
∴函數(shù)g′(x)=ex﹣a≥0在區(qū)間(1,+∞)上恒成立,
∴a≤[ex]min在區(qū)間(1,+∞)上成立.
而ex>e,
∴a≤e②;
綜合①②,a∈[1,e],
所以答案是:[1,e].
【考點(diǎn)精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)廠(chǎng)家生產(chǎn)一種產(chǎn)品的固定成本為4萬(wàn)元,并且每生產(chǎn)1百臺(tái)產(chǎn)品需增加投入0.8萬(wàn)元.已知銷(xiāo)售收入(萬(wàn)元)滿(mǎn)足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺(tái)),假定生產(chǎn)的產(chǎn)品都能賣(mài)掉,請(qǐng)完成下列問(wèn)題:

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長(zhǎng)為8、高為4的等腰三角形,側(cè)視圖是一個(gè)底邊長(zhǎng)為6、高為4的等腰三角形.

(1)求該幾何體的體積;

(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

表二:女生

(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;

(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

參考公式: ,其中.

參考數(shù)據(jù):

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為

1)求過(guò)點(diǎn)且與圓相切的直線(xiàn)的方程;

2)直線(xiàn)過(guò)點(diǎn),且與圓交于兩點(diǎn),若,求直線(xiàn)的方程;

3是圓上一動(dòng)點(diǎn),,若點(diǎn)的中點(diǎn),求動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為上的動(dòng)點(diǎn),求的中點(diǎn)到直線(xiàn)為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個(gè)圓構(gòu)成,O為大圓圓心,線(xiàn)段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為,兩小月牙之和(斜線(xiàn)部分)部分記為.在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自,,的概率分別記為p1,p2p3,則()

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求證:
(2)設(shè) =(0,1),若 + = ,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1 , F2是雙曲線(xiàn)C: (a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為

查看答案和解析>>

同步練習(xí)冊(cè)答案