我校為了了解高二級學(xué)生參加體育活動的情況,隨機抽取了100名高二級學(xué)生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均參加體育活動時間的頻率分布直方圖:

將日均參加體育活動時間不低于40分鐘的學(xué)生稱為參加體育活動的“積極分子”.根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過5%的前提下,你是否認為參加體育活動的“積極分子”與性別有關(guān)?
 
非積極分子
積極分子
合計

 
15
45

 
 
 
合計
 
 
 
 

 
非積極分子
積極分子
合計

30
15
45

45
10
55
合計
75
25
100
 
沒有理由認為“積極分子”與性別有關(guān).

試題分析:根據(jù)圖中所給的頻率分布直方圖可知在抽取的100人中,“積極分子”有25人,因此列聯(lián)表易得,通過計算K2≈3.030,可得沒有理由認為“積極分子”與性別有關(guān).
由頻率分布直方圖可知,在抽取的100人中,“積極分子”有25人,
從而2×2列聯(lián)表如下:
 
非積極分子
積極分子
合計

30
15
45

45
10
55
合計
75
25
100
    6分.
由2×2列聯(lián)表中數(shù)據(jù)代入公式計算,得:
K2≈3.030.    11分
因為3.030<3.841,
所以,在犯錯誤的概率不超過5%的前提下, 沒有理由認為“積極分子”與性別有關(guān).       14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種產(chǎn)品的廣告費用支出(萬元)與銷售額(萬元)之間有如下的對應(yīng)數(shù)據(jù):

2
4
5
6
8

30
40
60
50
70
x
2
4
5
6
8
y
30
40
60
50
70
 
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為9萬元時,銷售收入的值.
參考公式:回歸直線的方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下表是某市從3月份中隨機抽取的天空氣質(zhì)量指數(shù)()和“”(直徑小于等于微米的顆粒物)小時平均濃度的數(shù)據(jù),空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量優(yōu)良.
日期編號










空氣質(zhì)量指數(shù)(










小時平均濃度(










 
(1)根據(jù)上表數(shù)據(jù),估計該市當月某日空氣質(zhì)量優(yōu)良的概率;
(2)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取兩個對其當天的數(shù)據(jù)作進一步的分析,設(shè)事件為“抽取的兩個日期中,當天‘’的小時平均濃度不超過”,求事件發(fā)生的概率;
(3)在上表數(shù)據(jù)中,在表示空氣質(zhì)量優(yōu)良的日期中,隨機抽取天,記為“小時平均濃度不超過的天數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)某大學(xué)的女生體重(單位:)與身高(單位:)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是(    )
A.具有正的線性相關(guān)關(guān)系
B.回歸直線過樣本點的中心
C.若該大學(xué)某女生身高增加lcm,則其體重約增加0.85kg
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校高一、高二、高三的三個年級學(xué)生人數(shù)如下表:

按年級分層抽樣的方法評選優(yōu)秀學(xué)生50人,其中高三有10人.
(1)求z的值;
(2)用分層抽樣的方法在高一學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

樣本中共有五個個體,其值分別為a,0,1,2,3,若該樣本的平均值為1,則樣本方差為( )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,在其右面的表是年齡的頻率分布表。

(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下圖為某地區(qū)2012年1月到2013年1月鮮蔬價格指數(shù)的變化情況:

本月價格指數(shù)上月價格指數(shù).規(guī)定:當時,稱本月價格指數(shù)環(huán)比增長;
時,稱本月價格指數(shù)環(huán)比下降;當時,稱本月價格指數(shù)環(huán)比持平.
(1) 比較2012年上半年與下半年鮮蔬價格指數(shù)月平均值的大小(不要求計算過程);
(2) 直接寫出從2012年2月到2013年1月的12個月中價格指數(shù)環(huán)比下降的月份.若從這12個月中隨機選擇連續(xù)的兩個月進行觀察,求所選兩個月的價格指數(shù)都環(huán)比下降的概率;
(3)由圖判斷從哪個月開始連續(xù)三個月的價格指數(shù)方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個車間為了規(guī)定工時定額.需要確定加工零件所花費的時間,為此進行了10次試驗.測得的數(shù)據(jù)如下:
零件數(shù)x/個
10
20
30
40
50
60
70
80
90
100
加工時間y/分
62
68
75
81
89
95
102
108
115
122
(1)y與x是否具有線性相關(guān)關(guān)系?
(2)如果y與x具有線性相關(guān)關(guān)系,求回歸直線方程;
(3)根據(jù)求出的回歸直線方程,預(yù)測加工200個零件所用的時間為多少?

查看答案和解析>>

同步練習(xí)冊答案