【題目】已知函數(shù)f(x)=a2x+2ax-1(a>1,且a為常數(shù))在區(qū)間[-1,1]上的最大值為14.
(1)求f(x)的表達式;
(2)求滿足f(x)=7時x的值.
【答案】(1)f(x)=32x+23x-1(2)x=log32
【解析】
(1)令t=ax >0,由條件可得t=ax∈[,a],f(x)=(t+1)2-2,故當t=a時,函數(shù)y取得最大值為a2+2a-1=14,求得a的值,可得f(x)的解析式.
(2)由f(x)=7,求得3x=2,從而得到x的值.
(1)令t=ax >0,∵x∈[-1,1],a>1,
∴ax∈[,a],f(x)=y=t2+2t-1=(t+1)2-2,
故當t=a時,函數(shù)y取得最大值為a2+2a-1=14,求得a=3,
∴f(x)=32x+23x-1.
(2)由f(x)=7,可得32x+2×3x-1=7,
即(3x+4)(3x-2)=0,求得3x=2,∴x=log32.
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線C:x2=2py(p>0)的焦點為F,準線為l,A為C上一點,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點.
(1)若p=2且∠BFD=90°時,求圓F的方程;
(2)若A,B,F(xiàn)三點在同一直線m上,設直線m與拋物線C的另一個交點為E,在y軸上求一點G,使得∠OGE=∠OGA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的值域為[0,+∞),求實數(shù)a的取值范圍;
(2)若關于x的不等式F(x)>af(x)+12恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓: 的離心率,短軸右端點為, 為線段的中點.
(Ⅰ) 求橢圓的方程;
(Ⅱ)過點任作一條直線與橢圓相交于兩點,試探究在軸上是否存在定點,使得,若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,則“3<m<5”是“輸出i的值為5”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)2ex , 設k∈[﹣3,﹣1],對任意x1 , x2∈[k,k+2],則|f(x1)﹣f(x2)|的最大值為( )
A.4e﹣3
B.4e
C.4e+e﹣3
D.4e+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資類產品的收益與投資額成正比,投資類產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出兩類產品的收益與投資額的函數(shù)關系;
(2)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=,則關于x的函數(shù)F(x)=f(x)-a(0<a<1,a為常數(shù))的所有零點之和為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家規(guī)定個人稿費繳納方法為:不超過800元的不納稅,超過800元而不超過4000元的按超過800元部分的14%納稅,超過4000元的按全部稿酬的11.2%納稅(本題中稿費均指納稅前稿費).
(Ⅰ)某人出了一本書,獲得30000元的個人稿費,則這個人需要納稅是多少元?
(Ⅱ)試建立某人所得稿費x元與納稅額y元的函數(shù)關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com