本題滿分12分)已知直線的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:.
(1)求直線被曲線C截得的弦長,
(2)若直線與曲線C交于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo).
(1)
(2)
【解析】(1)由曲線
得化成普通方程 ① 5分
(2)方法一:把直線參數(shù)方程化為標(biāo)準(zhǔn)參數(shù)方程
(為參數(shù)) ②把②代入①
整理,得設(shè)其兩根為,則 8分
從而弦長為 10分
(2)由(1)當(dāng)(*)中時(shí)為中點(diǎn),中點(diǎn)為
思路分析:(1)把參數(shù)方程,化為普通方程,直線的參數(shù)方程為:(t為參數(shù)),化為普通方程,直線方程與雙曲線方程聯(lián)立消去得,利用弦長公式解得弦長為由韋達(dá)定理和(1)得線段AB的中點(diǎn)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
已知復(fù)數(shù),,且.
(1)若且,求的值;
(2)設(shè)=,求的最小正周期和單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知函數(shù)(x>0).(1)若b≥,求證≥(e是自然對數(shù)的底數(shù));(2)設(shè)F(x)=+(x≥1,a∈R),試問函數(shù)F(x)是否存在最小值?若存在,求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省揭陽市調(diào)研考試數(shù)學(xué)理卷 題型:解答題
(本題滿分12分)
已知橢圓:的長軸長是短軸長的倍,,是它的左,右焦點(diǎn).
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過動(dòng)點(diǎn)作以為圓心、以1為半徑的圓的切線(是切點(diǎn)),且使,求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)已知函數(shù)
(1) 若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111193815626868/SYS201205211120289687214444_ST.files/image003.png">,求實(shí)數(shù)的取值范圍;
(2) 若的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111193815626868/SYS201205211120289687214444_ST.files/image003.png">,求實(shí)數(shù)的取值范圍,并求定義域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com