11.如果全集U={1,2,3,4,5},M={1,2,5},則∁UM=( 。
A.{1,2}B.{3,4}C.{5}D.{1,2,5}

分析 利用補集定義直接求解.

解答 解:∵全集U={1,2,3,4,5},
M={1,2,5},
∴∁UM={3,4}.
故選:B.

點評 本題考查補集的求法,是基礎(chǔ)題,解題時要認真審題,注意補集定義的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知無窮數(shù)列{cn}滿足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,寫出數(shù)列{cn}的前4項;
(Ⅱ)對于任意0<c1≤1,是否存在實數(shù)M,使數(shù)列{cn}中的所有項均不大于M?若存在,求M的最小值;若不存在,請說明理由;
(Ⅲ)當c1為有理數(shù),且c1≥0時,若數(shù)列{cn}自某項后是周期數(shù)列,寫出c1的最大值.(直接寫出結(jié)果,無需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖所示,已知A,B是單位圓上兩點且|AB|=$\sqrt{3}$,設(shè)AB與x軸正半軸交于點C,α=∠AOC,β=∠OCB,則sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知α,β是兩個平面,m,n是兩條直線,則下列四個結(jié)論中,正確的有②③(填寫所有正確結(jié)論的編號)
①若m∥α,n∥α,則m∥n;
②若m⊥α,n∥α,則m⊥n;
③若a∥β,m?α,則m∥β;
④若m⊥n.m⊥α,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知sin(π+α)=$\frac{1}{2}$,則cos(α-$\frac{3}{2}$π)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知冪函數(shù)y=f(x)的圖象過點(2,$\sqrt{2}$),則下列說法正確的是( 。
A.f(x)是奇函數(shù),則在(0,+∞)上是增函數(shù)
B.f(x)是偶函數(shù),則在(0,+∞)上是減函數(shù)
C.f(x)既不是奇函數(shù)也不是偶函數(shù),且在(0,+∞)上是增函數(shù)
D.f(x)既不是奇函數(shù)也不是偶函數(shù),且在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在直角坐標系xOy中,已知曲線${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t為參數(shù)),曲線${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù),a>1),若C1恰好經(jīng)過C2的焦點,則a的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$tanθ=\frac{1}{2}$,則$tan({\frac{π}{4}-2θ})$=( 。
A.7B.-7C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

同步練習冊答案