(2013•浙江)已知a、b、c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則( 。
分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b變?yōu)殛P(guān)于a的不等式可得a>0.
解答:解:因?yàn)閒(0)=f(4),即c=16a+4b+c,
所以4a+b=0;
又f(0)>f(1),即c>a+b+c,
所以a+b<0,即a+(-4a)<0,所以-3a<0,故a>0.
故選A.
點(diǎn)評(píng):本題考查二次函數(shù)的性質(zhì)及不等式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知α∈R,sinα+2cosα=
10
2
,則tan2α=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ=
π
2
”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知i是虛數(shù)單位,則(2+i)(3+i)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知a∈R,函數(shù)f(x)=x3-3x2+3ax-3a+3.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時(shí),求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ) 過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x-2于M、N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案