【題目】如圖所示的四棱錐中,底面為矩形,平面,,M,N分別是,的中點(diǎn).
(1)求證:平面;
(2)若直線與平面所成角的余弦值為,求二面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取中點(diǎn)E,連接,,利用平行四邊形可證,由知,可證,故可證;
(2)根據(jù)即為直線與平面所成的角,可求出,分別以,,為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用向量法求二面角的大小即可.
(1)證明:取中點(diǎn)E,連接,,
因?yàn)?/span>M,N,E分別為,,的中點(diǎn),
,,
所以是平行四邊形,故,
因?yàn)?/span>,所以
又因?yàn)?/span>,,
,所以平面.
因?yàn)?/span>,E為中點(diǎn),所以,
所以,
所以;.
(2)因?yàn)?/span>,所以為在平面內(nèi)的射影,
所以即為直線與平面所成的角,
則,即,
因?yàn)?/span>,,
分別以,,為x軸,y軸,z軸建立空間直角坐標(biāo)系,
則,,,則,,
設(shè)平面的法向量,
則,即,取,則,,即,
取平面的法向量,
所以,
由圖可知,二面角為銳角,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程,點(diǎn)在直線上,直線與曲線交于兩點(diǎn).
(1)求曲線的普通方程及直線的參數(shù)方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《易·系辭上》有“河出圖,洛出書”之說.河圖、洛書是中國古代流傳下來的兩幅神秘圖案,蘊(yùn)含了深奧的宇宙星象之理,被譽(yù)為“宇宙魔方”,是中華文化,陰陽術(shù)數(shù)之源.其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為1的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若當(dāng)時取得極值,求a的值及的單調(diào)區(qū)間;
(Ⅱ)若存在兩個極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,.以,為鄰邊作平行四邊形,連接和.
(1)求證:平面;
(2)線段上是否存在點(diǎn),使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論單調(diào)性;
(Ⅱ)當(dāng)時,設(shè)函數(shù)存在兩個零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為12,,與交于點(diǎn),將菱形沿對角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com