已知橢圓C:=1(a>b>0)上任一點P到兩個焦點的距離的和為2,P與橢圓長軸兩頂點連線的斜率之積為-.設直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若= (O為坐標原點),求|y1-y2|的值;
(2)當直線l與兩坐標軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線=1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)已知圓O:x2+y2=3的半徑等于橢圓E:=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長。與軸的交點為,過坐標原點的直線與相交于點,直線分別與相交于點。
(1)求、的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C1:+y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設O為坐標原點,點A,B分別在橢圓C1和C2上,=2,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)設第(2)問中的與軸交于點,不同的兩點在上,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為.
(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,.
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點在軸上,拋物線上的點到的距離為2,且的橫坐標為1.直線與拋物線交于,兩點.
(1)求拋物線的方程;
(2)當直線,的傾斜角之和為時,證明直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com