已知點(diǎn)A(2,0),B(4,0),動(dòng)點(diǎn)P在拋物線y2=-4x運(yùn)動(dòng),則使取得最小值的點(diǎn)P的坐標(biāo)是                                

 

【答案】

(0,0)

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,函數(shù)y=2cos(ωx+θ)(x∈R,0≤θ≤
π
2
)
的圖象與y軸交于點(diǎn)(0,
3
)
,且在該點(diǎn)處切線的斜率為-2.
(1)求θ和ω的值;
(2)已知點(diǎn)A(
π
2
,0)
,點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=
3
2
x0∈[
π
2
,π]
時(shí),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-
2
,0),B(
2
,0)
,P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是-
1
2

(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程,并求出曲線C的離心率的值;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)在平面直角坐標(biāo)系中,點(diǎn)P(x,y)為動(dòng)點(diǎn),已知點(diǎn)A(
2
,0)
B(-
2
,0)
,直線PA與PB的斜率之積為-
1
2

(I)求動(dòng)點(diǎn)P軌跡E的方程;
( II)過(guò)點(diǎn)F(1,0)的直線l交曲線E于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱點(diǎn)為Q(M、Q不重合),求證:直線MQ過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(
2
,0)
,動(dòng)點(diǎn)M,N滿足
OA
+
OM
=2
ON
,其中O是坐標(biāo)原點(diǎn),若KAM•K ON=-
1
2

(1)求點(diǎn)M的軌跡E的方程;
(2)若過(guò)點(diǎn)H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個(gè)共公點(diǎn),且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(– 2,0),B(2,0),動(dòng)點(diǎn)P滿足:,且.

(1)求動(dòng)點(diǎn)P的軌跡G的方程;

(2)過(guò)點(diǎn)B的直線l與軌跡G交于兩點(diǎn)M、N.試問(wèn)在x軸上是否存在定點(diǎn)C ,使得 為常數(shù).若存在,求出點(diǎn)C的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案