在空間直角坐標(biāo)系O-xyz中,平面OAB的法向量為=(2, –2, 1), 已知P(-1, 3, 2),則P到平面OAB的距離等于 ( 。
A.4B.2C.3D.1
B

試題分析:因?yàn)橄蛄?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041444199383.png" style="vertical-align:middle;" />在平面OAB的法向量投影的絕對(duì)值為P到平面OAB的距離,所以.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點(diǎn),分別是線段,,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).
證明:直線平面;
(2) 若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中點(diǎn),,延長(zhǎng)AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示.

(1)求證:AE⊥平面BCD;
(2)求二面角A–DC–B的余弦值.
(3)在線段上是否存在點(diǎn)使得平面?若存在,請(qǐng)指明點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,

(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面ABCD是平行四邊形,,,,設(shè)中點(diǎn),點(diǎn)在線段上且

(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形中,,點(diǎn)分別是的中點(diǎn),點(diǎn)上,沿將梯形翻折,使平面平面.

(1)當(dāng)最小時(shí),求證:;
(2)當(dāng)時(shí),求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四棱錐PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F(xiàn)為PC的中點(diǎn),AF⊥PB.

(1)求PA的長(zhǎng);
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在空間直角坐標(biāo)系中,設(shè)點(diǎn)是點(diǎn)關(guān)于坐標(biāo)平面的對(duì)稱點(diǎn),則線段的長(zhǎng)度等于         .

查看答案和解析>>

同步練習(xí)冊(cè)答案