已知函數(shù).
(1)當(dāng)時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.
(1)在是減函數(shù);(2)
解析試題分析:(1)利用導(dǎo)數(shù)結(jié)合參數(shù)條件,判斷導(dǎo)函數(shù)的正負(fù),得到原函數(shù)的單調(diào)區(qū)間;
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而得出函數(shù)在閉區(qū)間上的最小值,即得到參數(shù)的一個方程,從而求出參數(shù)的值.
(1) ,因為,所以對任意實數(shù)恒成立,故在是減函數(shù)
(2)當(dāng)時,由(1)可知,在區(qū)間[1,2]是減函數(shù)
由得,(不符合舍去)
當(dāng)時,的兩根
①當(dāng),即時,在區(qū)間[1,2]恒成立,在區(qū)間[1,2]是增函數(shù),由 得
②當(dāng),即時 在區(qū)間[1,2]恒成立 在區(qū)間[1,2]是減函數(shù)
,(不符合舍去)
③當(dāng),即時,在區(qū)間是減函數(shù),在區(qū)間是增函數(shù);所以 無解
綜上,
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)是定義在集合M上的函數(shù).若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=在區(qū)間[3,10]上封閉,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z,且a≠b)上封閉,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用長為18 m的鋼條圍成一個長方體容器的框架,如果所制的容器的長與寬之比為2∶1,那么高為多少時容器的容積最大?并求出它的最大容積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)已知區(qū)間是不等式的解集的子集,求的取值范圍;
(2)已知函數(shù),在函數(shù)圖像上任取兩點、,若存在使得恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com