橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn).當(dāng)直線l與x軸垂直時(shí),
|CD|
|AB|
=2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)求過(guò)點(diǎn)O,F(xiàn)1,并且與橢圓的左準(zhǔn)線相切的圓的方程;
(Ⅲ)求
F2A
F2B
的最值.
分析:(Ⅰ)又拋物線方程求橢圓中c的值,再根據(jù)橢圓與拋物線的通徑比求出a,b關(guān)系式,橢圓方程可解.
(Ⅱ)由圓過(guò)點(diǎn)O,F(xiàn)1可得圓心橫坐標(biāo)值,再根據(jù)圓與橢圓的左準(zhǔn)線相切,可求出半徑.
(Ⅲ)設(shè)A(x1,y1),B(x2,y2),直線l方程與橢圓方程聯(lián)立,得x1x2與x1+x2,再代入
F2A
F2B
,化簡(jiǎn),即可得到關(guān)于k的式子,其范圍也就是
F2A
F2B
的范圍.進(jìn)而求出最值.
解答:解:(Ⅰ)∵橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,∴c=1
∵過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn).當(dāng)直線l與x軸垂直時(shí),∴AB為橢圓通徑,CD為拋物線通經(jīng),
|CD|
|AB|
=2
2
,∴
4
2b2
a
=2
2
,b2=
2
2
a,∵a2=b2+c2,得a=
2
,b=1,∴所求橢圓方程為
x2
2
+y2=1

(Ⅱ)∵所求圓過(guò)點(diǎn)O,F(xiàn)1,可設(shè)坐標(biāo)為(-
1
2
,n),∵圓與橢圓的左準(zhǔn)線相切,∴半徑r=-
1
2
-(-2)=
3
2

(-
1
2
)
2
n2
=
3
2
,n=
2
,∴所求圓方程為(x+
1
2
)
2
+(y-
2
)
2
=
9
4

(Ⅲ)設(shè)A(x1,y1),B(x2,y2
①當(dāng)直線l斜率存在時(shí),設(shè)方程為y=k(x+1),代入橢圓方程,得,
x2
2
k2(x+1)2=1

∴x1x2=
2k2-2
1+2k2
,x1+x2=
-4k2
1+2k2
..
F2A
F2B
=(x1-1)(x2-1)+y1y2=
7k2-1
1+2k2
=
7
2
--
9
2
1+2k2

∵k2∈[0,+∞),∴
F2A
F2B
∈[-1,
7
2

②當(dāng)直線l斜率不存在時(shí),可得。-1,
2
2
)B(-1,-
2
2
),此時(shí),
F2A
F2B
=
7
2

綜上,
F2A
F2B
∈[1,
7
2
].∴
F2A
F2B
最大值為
7
2
,最小值為-1.
點(diǎn)評(píng):本題考查了橢圓,拋物線與直線的綜合應(yīng)用,屬常規(guī)題,應(yīng)當(dāng)掌握解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的中心在原點(diǎn),其左焦點(diǎn)為F(-
2
,0),左準(zhǔn)線l的方程為x=-
3
2
2
.PQ是過(guò)點(diǎn)F且與x軸不垂直的弦,PQ的中點(diǎn)M到左準(zhǔn)線l的距離為d.
(1)求此橢圓的方程;    
(2)求證:
PQ
d
為定值;
(3)在l上是否存在點(diǎn)R,使△PQR為正三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)實(shí)軸長(zhǎng)為4
3
的橢圓的中心在原點(diǎn),其焦點(diǎn)F1,,F(xiàn)2在x軸上.拋物線的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸,兩曲線在第一象限內(nèi)相交于點(diǎn)A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)的直線與橢圓交于A、B兩點(diǎn),與拋物線交于CD兩點(diǎn).當(dāng)直線x軸垂直時(shí),

(Ⅰ)求橢圓的方程;

(II)求過(guò)點(diǎn)O、,并且與橢圓的左準(zhǔn)線相切的圓的方程;

(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三三模文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為,點(diǎn)在直線上,點(diǎn)到橢圓的左焦點(diǎn)的距離為.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是橢圓上異于的任意一點(diǎn),點(diǎn)軸上的射影為,的中點(diǎn),直線交直線于點(diǎn),的中點(diǎn),試探究:在橢圓上運(yùn)動(dòng)時(shí),直線與圓:的位置關(guān)系,并證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案