【題目】如圖,在四棱柱中, 平面,底面為梯形, , , ,點, 分別為, 的中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點,使與平面所成角的正弦值是,若存在,求的長;若不存在,請說明理由.
【答案】(Ⅰ)見解析;(Ⅱ) (Ⅲ)
【解析】試題分析:(Ⅰ)連接,證明四邊形是平行四邊形. 得到,即可證明平面
(Ⅱ)以為坐標原點,分別以直線, 為軸, 軸建立空間直角坐標系,分別求出面的法向量和面的法向量,即可求出二面角的余弦值;
(Ⅲ)存設(shè)點,所以
設(shè)與平面所成角為,所以
所以,即可求出的長
試題解析:(Ⅰ)連接,因為點, 分別為, 的中點,
所以, .
所以四邊形是平行四邊形.
所以
因為平面, 平面,
所以平面
(Ⅱ)因為平面, ,
所以平面.
所以以為坐標原點,分別以直線, 為軸, 軸建立空間直角坐標系,則軸在平面內(nèi).
所以, , , ,
所以, .
設(shè)平面的法向量為,所以即
所以.
設(shè)平面的法向量為,
所以
又二面角為銳角,
所以二面角的余弦值是
(Ⅲ)存在. 設(shè)點,所以
設(shè)與平面所成角為,所以
所以,解得
所以
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中, 、分別為、的中點, , .
(1)求證:平面平面;
(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學期望;
②小王打算到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標系中,直線與直線之間的陰影部分即為,區(qū)域中動點到的距離之積為1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)動直線穿過區(qū)域,分別交直線于兩點,若直線與軌跡有且只有一個公共點,求證: 的面積恒為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長方形中, , 是中點(圖1).將△沿折起,使得(圖2)在圖2中:
(1)求證:平面 平面;
(2)在線段上是否存點,使得二面角為大小為,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p>0)于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.
(1)求;
(2)除H以外,直線MH與C是否有其它公共點?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點與短軸兩個端點的連線互相垂直.
(1)求橢圓的標準方程;
(2)設(shè)點為橢圓的上一點,過原點且垂直于的直線與直線交于點,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com