(本題滿分12分)如圖所示,F1F2是雙曲線x2y2 = 1的兩個焦點,O為坐標原點,

O是以F??1F2為直徑的圓,直線ly = kx + b與圓O相切,并與雙曲線交于A、B兩點.

(Ⅰ)根據(jù)條件求出bk的關系式;

(Ⅱ)當,且滿足2≤m≤4時,

求△AOB面積的取值范圍.

(Ⅰ)  b2 = 2(k2 + 1)(k≠±1)  (Ⅱ)   


解析:

(Ⅰ)因為圓O的方程為x2 + y2 = 2,所以d =,可得b2 = 2(k2 + 1)(k≠±1).-------(4分)

(Ⅱ)設A(x1y1),B(x2,y2),由,

所以,--(6分)

所以=

=,

因為|AB| =×=

OAB的距離,------(10分)

  所以

=.-----(12分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側棱,為中點,中點,上一個動點.

(Ⅰ)確定點的位置,使得;

(Ⅱ)當時,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

 ⑴求異面直線PD與AE所成角的大;

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點.

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習冊答案