在一次物理競(jìng)賽中,學(xué)生成績(jī)均在內(nèi)[50,100),相應(yīng)的頻率分布直方圖如圖,已知成績(jī)?cè)赱60,70)的學(xué)生有40人,則成績(jī)?cè)赱70,90)的人數(shù)為( 。
A、20B、22C、25D、26
考點(diǎn):頻率分布直方圖
專題:概率與統(tǒng)計(jì)
分析:根據(jù)頻率分布直方圖,求出樣本容量,再求出成績(jī)?cè)赱70,90)的人數(shù).
解答: 解:根據(jù)頻率分布直方圖,得;
學(xué)生總?cè)藬?shù)是
40
0.04×10
=100;
∴成績(jī)?cè)赱70,90)的人數(shù)為
(0.01+0.015)×10×100=25.
故選:C.
點(diǎn)評(píng):本題考查了頻率分布直方圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)頻率、頻數(shù)與樣本容量的關(guān)系進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正六邊形ABCDEF的邊長(zhǎng)為1,則
AD
DB
=(  )
A、-3
B、-
3
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={1,2,3}的非空真子集個(gè)數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知向量
AC
AB
AD
的和向量,
AC
=
a
DB
=
b
,且|
a
|=2,|
b
|=1,
a
b
的夾角為60°.
(1)求線段AB的長(zhǎng);
(2)過(guò)點(diǎn)C作CH⊥AB,垂足為H,若
AH
a
b
(λ,μ∈R),試求λ,μ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓
x2
m
+
y2
m-1
=1(2≤m≤5),過(guò)其左焦點(diǎn)且斜率為1的直線與橢圓及其準(zhǔn)線交于A、B、C、D,設(shè)f (m)=||AB|-|CD||. 
(1)求直線AB的方程;
(2)求f(m)的解析式;
(3)求f(m)的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
424
,b=
312
,c=
6
,則a,b,c的大小關(guān)系是(  )
A、a>b>c
B、b<c<a
C、b>c>a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在直角坐標(biāo)系的原點(diǎn)、焦點(diǎn)在x軸上的橢圓C,其長(zhǎng)軸的長(zhǎng)為6,點(diǎn)F1,F(xiàn)2為橢圓C的左、右焦點(diǎn),點(diǎn)P為該橢圓上的動(dòng)點(diǎn),且△F1PF2 面積的最大值為2
5

(1)求橢圓C的方程;
(2)求
1
PF
2
1
+
1
PF
2
2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)=
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)定義:若存在一個(gè)非零常數(shù)T,使得f(x+T)=f(x)對(duì)定義域中的任何實(shí)數(shù)x都恒成立,那么,我們把f(x)叫以T為周期的周期函數(shù),它特別有性質(zhì):對(duì)定義域中的任意x,f(x+nT)=f(x),(n∈Z).若函數(shù)g(x)是定義在R上的周期為2的奇函數(shù),切當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px的焦點(diǎn)與橢圓
x2
6
+
y2
2
=1
的右焦點(diǎn)重合,則p的值為( 。
A、-2B、2C、-4D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案