20.設a,b是兩條直線α,β是兩個平面,則“a?α,b⊥β,α∥β”是“a⊥b”的( 。
A.必要不充分條件B.充要條件
C.充分不必要條件D.既不充分也不必要條件

分析 根據空間直線和平面的位置關系結合充分條件和必要條件的定義進行判斷即可.

解答 解:若α∥β,則當b⊥β時,b⊥α,
∵a?α,∴a⊥b成立,即充分性成立,
若a⊥b,則a?α,b⊥β,α∥β不一定成立,即必要性不成立,
則“a?α,b⊥β,α∥β”是“a⊥b”的充分不必要條件,
故選:C

點評 本題主要考查充分條件和必要條件的判斷,根據空間直線和平面的位置關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知O為坐標原點,F(xiàn)是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點,A、B分別為橢圓C的左、右頂點,P為橢圓C上一點,且PF⊥x軸.過頂點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經過OE的中點,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.橢圓E經過點A(2,3),對稱軸為坐標軸,焦點F1,F(xiàn)2在x軸上,離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓E的方程;
(2)過A點,且斜率為2的直線交橢圓于B點.求左焦點到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知x1>0,x2>0,x1+x2<ex1x2(e為自然對數(shù)的底數(shù)),則( 。
A.x1+x2>1B.x1+x2<1C.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$<$\frac{1}{e}$D.$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.四棱柱ABCD-A1B1C1D1的底面是平行四邊形,M是AC與BD的交點.若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$,$\overrightarrow{A{A_1}}$=$\overrightarrow c$,則$\overrightarrow{{C_1}M}$可以表示為( 。
A.$\overrightarrow a+\overrightarrow b+\frac{1}{2}\overrightarrow c$B.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b+\overrightarrow c$C.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b+\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.從某市統(tǒng)考的學生數(shù)學考試卷中隨機抽查100份數(shù)學試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分布直方圖.
(1)求這100份數(shù)學試卷的樣本平均分$\overline x$和樣本方差s2
(同一組中的數(shù)據用該組區(qū)間的中點值作代表)
(2)從總分在[55,65)和[135,145)的試卷中隨機抽取2分試卷,求抽取的2分試卷中至少有一份總分少于65分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x-lnx,g(x)=x3+x2(x-lnx)-16x.
(1)求f(x)的單調區(qū)間及極值;
(2)求證:g(x)>-20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{a}{2}{x^2}+x-3$有兩個極值點,則a的范圍(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.f(x)在R上為奇函數(shù),且當x>0時f(x)=x-1,則當x<0時f(x)=x+1.

查看答案和解析>>

同步練習冊答案