【題目】已知函數(shù).
(Ⅰ)若在處取極值,求在點處的切線方程;
(Ⅱ)當(dāng)時,若有唯一的零點,求證:
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:
本題考查導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)在研究函數(shù)單調(diào)性、極值中的應(yīng)用。(Ⅰ)根據(jù)函數(shù)在處取極值可得,然后根據(jù)導(dǎo)數(shù)的幾何意義求得切線方程即可。(Ⅱ)由(Ⅰ)知 ,令,可得在上單調(diào)遞減,在上單調(diào)遞增。結(jié)合函數(shù)的單調(diào)性和函數(shù)值可得在上有唯一零點,設(shè)為,證明即可得結(jié)論。
試題解析:
(Ⅰ)∵,
,
∵在處取極值,
∴,解得.
,
,
又.
∴在點處的切線方程為,
即
(Ⅱ)由(Ⅰ)知 ,
令,
則
由,可得
在上單調(diào)遞減,在上單調(diào)遞增。
又,故當(dāng)時, ;
又,故在上有唯一零點,設(shè)為,
從而可知在上單調(diào)遞減,在上單調(diào)遞增,
因為有唯一零點,
故且
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是實數(shù)。設(shè), 為該函數(shù)圖象上的兩點,且.
(1)若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;
(2)若函數(shù)的圖象在點處的切線重合,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓和的參數(shù)方程分別是(為參數(shù))和(為參數(shù)),以為極點, 軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓和的極坐標(biāo)方程;
(Ⅱ)射線: 與圓交于點、,與圓交于點、,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中=2.71828…為自然數(shù)的底數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,求證:對任意的, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(2x-y+1,x+y-2),b=(2,-2).
①當(dāng)x、y為何值時,a與b共線?
②是否存在實數(shù)x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)的圖象過原點,對,恒有成立,設(shè)數(shù)列滿足.
(I)求證:對,恒有成立;
(II)求函數(shù)的表達式;
(III)設(shè)數(shù)列前項和為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;
(2)若, ,函數(shù)滿足對任意,都有恒成立,求的取值范圍;
(3)若,函數(shù),且有兩個極值點,其中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線方程為
(1)若= ,求證:曲線上的任意一點處的切線與直線和直線圍成的三角形面積為定值;
(2)若,是否存在實數(shù),使得對于定義域內(nèi)的任意都成立;
(3)在(2)的條件下,若方程有三個解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com