【題目】如圖,CA,CB分別與圓O切于A,B兩點,AE是直徑,OF平分∠BOE交CB的延長線于F,BD∥AC.
(1)證明:OB2=BCBF;
(2)證明:∠DBF=∠AOB.
【答案】
(1)證明:連接OC,由CA,CB為切線,可得CA=CB,
OA=OB,OC=OC,
即有△OAC≌△OBC,
即有∠AOC=∠BOC,
又OF平分∠BOE交CB的延長線于F,
可得∠EOF=∠BOF,
則∠FOC=∠FOB+∠BOC=∠EOF+∠AOC=90°,
在直角三角形COF中,OB為斜邊CF上的高,
由射影定理,可得OB2=BCBF
(2)證明:由∠CAO=∠CBO=90°,可得
四點C,A,O,B共圓,延長AC至M,
即有∠MCB=∠AOB,
由BD∥AC,可得∠DBF=∠MCB,
即有∠DBF=∠AOB
【解析】(1)連接OC,運用切線的性質(zhì),可得△OAC≌△OBC,結(jié)合內(nèi)角平分線的定義,可得∠FOC=90°,由直角三角形的射影定理,即可得證;(2)由對角互補,可得四點C,A,O,B共圓,延長AC至M,運用兩直線平行的性質(zhì),即可得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大。
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(1)用含a的式子表示b;
(2)令F(x)= ,其圖象上任意一點P(x0 , y0)處切線的斜率 恒成立,求實數(shù)a的取值范圍;
(3)若a=2,試求f(x)在區(qū)間 上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人各有相同的小球10個,在每人的10個小球中都有5個標(biāo)有數(shù)字1,3個標(biāo)有數(shù)字2,2個標(biāo)有數(shù)字3。兩人同時分別從自己的小球中任意抽取1個,規(guī)定:若抽取的兩個小球上的數(shù)字相同,則甲獲勝,否則乙獲勝,求乙獲勝的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中隨機抽取5頭,測量豬的體長x(cm)和體重y(kg),得如下測量數(shù)據(jù):
豬編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 181 | 166 | 185 | 180 |
y | 95 | 100 | 97 | 103 | 101 |
(1)當(dāng)且僅當(dāng)x,y滿足:x≥180且y≥100時,該豬為優(yōu)等品,用上述樣本數(shù)據(jù)估計山區(qū)養(yǎng)殖場散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量;
(2)從抽取的上述5頭豬中,隨機抽取2頭中優(yōu)等品數(shù)x的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)fn(x)=﹣xn+3ax(a∈R,n∈N+),若對任意的x1 , x2∈[﹣1,1],都有|f3(x1)﹣f3(x2)|≤1,則a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線方程為,問:是否存在過點M(1,1)的直線l,使得直線與雙曲線交于P,Q兩點,且M是線段PQ的中點?如果存在,求出直線的方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com