若關(guān)于x的不等式x2+ax-2>0在區(qū)間[1,4]上有解,則實(shí)數(shù)a的取值范圍為(  )
A、(-
7
2
,+∞)
B、[-
7
2
,1]
C、(1,+∞)
D、(-
7
2
,1)
考點(diǎn):一元二次不等式的解法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:關(guān)于x的不等式x2+ax-2>0在區(qū)間[1,4]上有解?a>(
2
x
-x)min,x∈[1,4].利用函數(shù)的單調(diào)性即可得出.
解答: 解:∵關(guān)于x的不等式x2+ax-2>0在區(qū)間[1,4]上有解,
∴a>
2
x
-x,x∈[1,4],
?a>(
2
x
-x)min,x∈[1,4],
∵函數(shù)f(x)=
2
x
-x在x∈[1,4]單調(diào)遞減,
∴當(dāng)x=4時(shí),函數(shù)f(x)取得最小值-
7
2
,
∴實(shí)數(shù)a的取值范圍為(-
7
2
,+∞).
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的單調(diào)性、分離參數(shù)法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P在邊長(zhǎng)為1的正方形的邊上運(yùn)動(dòng),設(shè)M是CD的中點(diǎn),則當(dāng)P沿著路徑A-B-C-M運(yùn)動(dòng)時(shí),點(diǎn)P經(jīng)過(guò)的路程x與△APM的面積y的函數(shù)關(guān)系為y=f(x),則y=f(x)的圖象是
( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(-1,2),
b
=(m,-1),
c
=(3,-2),若(
a
-
b
)⊥
c
,則m的值是( 。
A、
7
2
B、
5
3
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[0,+∞)的函數(shù)f(x)=ex-bx有且只有一個(gè)零點(diǎn),則實(shí)數(shù)b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱長(zhǎng)為1的正方體的俯視圖是邊長(zhǎng)為1正方形,則其主視圖的面積不可能是( 。
A、
2
B、
2
-1
2
C、1
D、
3
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式的(x-2)(2x-3)<0解集是(  )
A、(-∞,
3
2
)∪(2,+∞)
B、R
C、(
3
2
,2)
D、φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,π)上單調(diào)遞增的是( 。
A、y=sinx
B、y=tan|x|
C、y=sin(x-
π
2
D、y=cos(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2•lga-2x+2在區(qū)間(1,3)內(nèi)有且只有一個(gè)零點(diǎn),那么實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知X=logmn,則mn>1是X>1的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案