已知函數(shù)f(x)=1-2ax-a2x(a>1).
(1)求函數(shù)f(x)的值域;
(2)若x∈[-2,1]時(shí),函數(shù)f(x)的最小值是-7,求a的值及函數(shù)f(x)的最大值.
(1)(-∞,1)(2)
(1)由題意,知f(x)=2-(1+ax)2,因?yàn)閍x>0,所以f(x)<2-1=1,所以函數(shù)f(x)的值域?yàn)?-∞,1).
(2)因?yàn)閍>1,所以當(dāng)x∈[-2,1]時(shí),a-2≤ax≤a,于是fmin(x)=2-(a+1)2=-7,所以a=2,此時(shí),函數(shù)f(x)的最大值為2-(2-2+1)2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的函數(shù)f(x),滿足f(m+n2)=f(m)+2[f(n)]2,m,nR,且f(1):≠0,則f(2014)的值為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開花,這些古蓮子是多少年以前的遺物呢?要測(cè)定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過科學(xué)家測(cè)定知道,若14C的原始含量為a,則經(jīng)過t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測(cè)得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=(1-x2)(x2+ax+b)的圖象關(guān)于直線x=-2對(duì)稱,則f(x)的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某同學(xué)從A地跑步到B地,隨路程的增加速度減。粢詙表示該同學(xué)離B地的距離,x表示出發(fā)后的時(shí)間,則下列圖象中較符合該同學(xué)走法的是____________.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在(0,+∞)上的函數(shù)f(x),滿足(1)f(9)=2;(2)對(duì)?a,b∈(0,+
∞),有f(ab)=f(a)+f(b),則f=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a>0,a≠1,函數(shù)f(x)=若函數(shù)f(x)在[0,2]上的最大值比最小值大,則a的值為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某家具的標(biāo)價(jià)為132元,若降價(jià)以九折出售(即優(yōu)惠10%),仍可獲利10%(相對(duì)進(jìn)貨價(jià)),則該家具的進(jìn)貨價(jià)是(  )
A.118元B.105元
C.106元D.108元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在某條件下的汽車測(cè)試中,駕駛員在一次加滿油后的連續(xù)行駛過程中從汽車儀表盤得到如下信息:
時(shí)間
油耗(升/100千米)
可繼續(xù)行駛距離(千米)
10:00
9.5
300
11:00
9.6
220
注:油耗=,可繼續(xù)行駛距離=;
平均油耗=.
從以上信息可以推斷在10:00-11:00這一小時(shí)內(nèi)    (填上所有正確判斷的序號(hào)).
①行駛了80千米;
②行駛不足80千米;
③平均油耗超過9.6升/100千米;
④平均油耗恰為9.6升/100千米;
⑤平均車速超過80千米/小時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案