6.已知cosα=$\frac{3}{5}$,α∈(π,2π),則tan(α-$\frac{3π}{4}$)=-$\frac{1}{7}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得sinα的值,可得tanα的值,再利用誘導(dǎo)公式,兩角和差的正切公式求得要求式子的值.

解答 解:∵cosα=$\frac{3}{5}$,α∈(π,2π),∴α∈($\frac{3π}{2}$,2π),∴sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{4}{5}$,
∴tanα=-$\frac{4}{3}$,則tan(α-$\frac{3π}{4}$)=tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{-\frac{1}{3}}{\frac{7}{3}}$=-$\frac{1}{7}$,
故答案為:-$\frac{1}{7}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,兩角和差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面區(qū)域D=$\left\{{({x,y})\left|\begin{array}{l}\\ 3x+y≥3\\ x-y≤2\\ x+3y≤3\end{array}\right.}\right\}$,z=3x-2y,若命題“?(x0,y0)∈D,z>m”為假命題,則實數(shù)m的最小值為( 。
A.$\frac{3}{4}$B.$\frac{7}{4}$C.$\frac{21}{4}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}是首項為1的單調(diào)遞增的等比數(shù)列,且滿足a3,$\frac{5}{3}{a_4},{a_5}$成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3an+1(n∈N*),求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.?dāng)?shù)列{an}的前n項和為Sn,且an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,a1=2,則S2017=1010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={1,2,6},B={2,3,6},則A∪B={1,2,3,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x}{x+2}$-ax2,其中a∈R.
(1)若a=1時,求函數(shù)f(x)的零點;
(2)當(dāng)a>0時,求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知M=x2-3x+7,N=-x2+x+1,則( 。
A.M<NB.M>N
C.M=ND.M,N的大小與x的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知不等式組$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面區(qū)域為D,若?(x,y)∈D,|x|+2y≤a為真命題,則實數(shù)a的取值范圍是(  )
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$cos(-\frac{19π}{6})$的值為.(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案