【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設計各面是玻璃平面的無底正四棱柱將其罩住,罩內(nèi)充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元
A.4500B.4000C.2880D.2380
科目:高中數(shù)學 來源: 題型:
【題目】已知位數(shù)滿足下列條件:①各個數(shù)字只能從集合中選;②若其中有數(shù)字,則在的前面不含,將這樣的位數(shù)的個數(shù)記為;
(1)求、;
(2)探究與之間的關系,求出數(shù)列的通項公式;
(3)對于每個正整數(shù),在與之間插入個得到一個新數(shù)列,設是數(shù)列的前項和,試探究能否成立,寫出你探究得到的結(jié)論并給出證明;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中a為非零常數(shù).
討論的極值點個數(shù),并說明理由;
若,證明:在區(qū)間內(nèi)有且僅有1個零點;設為的極值點,為的零點且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若,求曲線在處的切線方程;
(2)設函數(shù)若至少存在一個,使得成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)試判斷函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)在上有且僅有一個零點,
(i)求證:此零點是的極值點;
(ⅱ)求證:.
(本題可能會用到的數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的導函數(shù)在上有三個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點,且曲線在兩點, 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,直線l與橢圓C交于P,Q兩點,且點M滿足.
(1)若點,求直線的方程;
(2)若直線l過點且不與x軸重合,過點M作垂直于l的直線與y軸交于點,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com