【題目】199個數(shù)字中取3個偶數(shù)和4個奇數(shù),試問:

(1)能組成多少個沒有重復數(shù)字的七位數(shù)?

(2)(1)中的七位數(shù)中,偶數(shù)排在一起,奇數(shù)也排在一起的有多少個?

(3)(1)中任意2個偶數(shù)都不相鄰的七位數(shù)有多少個?

【答案】(1)100800;(2)5760;(3)28800

【解析】

(1)分三步完成即得符合題意的七位數(shù)有.(2)利用捆綁法求出總數(shù).(3)利用插空法求得共有多少個七位數(shù).

(1)分步完成:

第一步,在4個偶數(shù)中取3個,有種情況.

第二步,在5個奇數(shù)中取4個,有種情況.

第三步,將3個偶數(shù)、4個奇數(shù)進行排列,有種情況.

所以符合題意的七位數(shù)有=100800().

(2)在(1)中的七位數(shù)中,3個偶數(shù)排在一起,4個奇數(shù)也排在一起的有=5760().

(3)在(1)中的七位數(shù)中,偶數(shù)都不相鄰,可先把4個奇數(shù)排好,再將3個偶數(shù)分別插入5個空位(包括兩端)中,共有=28800().

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了調研學生的數(shù)學成績和物理成績是否有關系,隨機抽取了189名學生進行調查,調查結果如下:在數(shù)學成績較好的94名學生中,有54名學生的物理成績較好,有40名學生的物理成績較差;在成績較差的95名學生中,有32名學生的物理成績較好,有63名學生的物理成績較差.根據(jù)以上的調查結果,利用獨立性檢驗的方法可知,約有________的把握認為“學生的數(shù)學成績和物理成績有關系”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為 .若直線l與曲線C交于A,B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間(單位:h)的樣本數(shù)據(jù).

(1)應收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4 h的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4 h,請完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”?

男生

女生

總計

每周平均體育運動時間不超過4h

每周平均體育運動時間超過4h

總計

附:

P(K2≥k0)

0.100

0.050

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.

(1)證明:AE⊥PD;

(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知pq

1)若pq充分不必要條件,求實數(shù)的取值范圍;

2)若p”q”的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從1,2,3,4,5中隨機取出兩個不同的數(shù),則其和為奇數(shù)的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3-3mx+n(m>0)的極大值為6,極小值為2.

(1)求實數(shù)m,n的值;      

(2)求f(x)在區(qū)間[0,3]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案