精英家教網 > 高中數學 > 題目詳情
12、已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任意m,n∈N*都有①f(m,n+1)=f(m,n)+2; 
②f(m+1,1)=2f(m,1).則f(2007,2008)的值為( 。
分析:由已知中對任意m、n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).我們易推斷出:{f(m,n)}是等差數列,{f(m,1)}是等比數列,因此可以求得f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,進而可以求得f(2007,2008)的值.
解答:解:∵f(m,n+1)=f(m,n)+2
∴{f(m,n)}是以1為首項,2為公差的等差數列
∴f(1,n)=2n-1
又∵f(m+1,1)=2f(m,1)
∴{f(m,1)}是以1為首項2為公比的等比數列,
∴f(n,1)=2n-1
∴f(m,n+1)=2m-1+2n
∴f(2007,2008)=22006+4014
故選C.
點評:本題考查的知識點等差數列和等比數列的定義,其中根據已知條件推斷出:f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本題的關鍵,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=16; (3)f(5,6)=26,其中正確結論的序號為
(1)(2)(3)
(1)(2)(3)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為________.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年山東省臨沂一中高二(上)10月月考數學試卷(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省衡水中學高二(上)第一次調研數學試卷(理科)(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省郴州市汝城一中高二(上)第三次月考數學試卷A(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

同步練習冊答案