【題目】已知橢圓的左焦點(diǎn)為,橢圓上動(dòng)點(diǎn)到點(diǎn)的最遠(yuǎn)距離和最近距離分別為和.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)且斜率為的直線與橢圓交于、兩點(diǎn),若,為坐標(biāo)原點(diǎn),求的面積.
【答案】(1)(2)
【解析】
(1)根據(jù)橢圓上動(dòng)點(diǎn)到點(diǎn)的最遠(yuǎn)距離和最近距離求得的值,由此求得的值,結(jié)合求得的值,進(jìn)而求得橢圓方程.
(2)解法一:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達(dá)定理,結(jié)合求得的值,然后根據(jù)三角形的面積公式求得三角形的面積.解法二:主要步驟和解法一相同,不同點(diǎn)在于采用代數(shù)式恒等變換求得的值,其它步驟與解法一相同..
(1)設(shè),由已知,.∴.∴.則橢圓的方程為.
(2)解法1:設(shè).與橢圓聯(lián)立得.化簡(jiǎn)得.設(shè),由韋達(dá)定理,有.又,.
.
∴.則.聯(lián)立得.
則.即.
∴.
∴.
解法2:設(shè).,
與橢圓聯(lián)立得.化簡(jiǎn)得.
其兩個(gè)分別為,∴.①
又..
∵.化簡(jiǎn)得到.②
在①中,令,得.③
令,.∴,.④
將③、④代入②得.解得.
則.即.
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.
(1)求的離心率及方程;
(2)試問(wèn):是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為常數(shù)).
(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),證明:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),是它的兩個(gè)頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,函數(shù)在,處取得極值,其中.
(1)求實(shí)數(shù)t的取值范圍;
(2)判斷在上的單調(diào)性并證明;
(3)已知在上的任意、,都有,令,若函數(shù)有3個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論在上的零點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過(guò)拋物線的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com