已知P是橢圓數(shù)學公式上的動點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,則數(shù)學公式的取值范圍是________.

[-4,4]
分析:用坐標表示向量,求出數(shù)量積,根據(jù)橢圓的范圍,即可確定的取值范圍.
解答:設P的坐標為(x,y),則
∵橢圓,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,∴F1(-2,0),F(xiàn)2(2,0)
=(-2-x,-y)•(2-x,-y)=x2-8+y2==
∵0≤x2≤12

的取值范圍是[-4,4]
故答案為:[-4,4]
點評:本題考查向量的數(shù)量積,考查橢圓的標準方程,正確求出數(shù)量積是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
)

(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(3)過原點O的直線交橢圓于點B,C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1是橢圓
x2
25
+
y2
9
=1
的左焦點,P是橢圓上的動點,A(1,1)是一定點,則PA+PF1的最大值為
10+
10
10+
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在平面直角坐標系xOy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
)

(Ⅰ)求該橢圓的標準方程;
(Ⅱ)若P是橢圓上的動點,求線段PA中點M的軌跡方程;
(Ⅲ)是否存在直線l,滿足l過原點O并且交橢圓于點B、C,使得△ABC面積為1?如果存在,寫出l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省鎮(zhèn)江市高三(上)期末數(shù)學試卷(解析版) 題型:填空題

已知P是橢圓上的動點,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,則的取值范圍是   

查看答案和解析>>

同步練習冊答案