A. | BC與平面A1BE內(nèi)某直線平行 | B. | CD∥平面A1BE | ||
C. | BC與平面A1BE內(nèi)某直線垂直 | D. | BC⊥A1B |
分析 構(gòu)造平面BCE,平面BFE,則可判斷A,B,C,使用假設(shè)法判斷D.
解答 解:連結(jié)CE,當(dāng)平面A1BE與平面BCE重合時(shí),BC?平面A1BE,
∴平面A1BE內(nèi)必存在與BC平行和垂直的直線,故A,C可能成立;
在平面BCD內(nèi)過(guò)B作CD的平行線BF,使得BF=CD,
連結(jié)EF,則當(dāng)平面A1BE與平面BEF重合時(shí),BF?平面A1BE,
故平面A1BE內(nèi)存在與BF平行的直線,即平面A1BE內(nèi)存在與CD平行的直線,
∴CD∥平面A1BE,故C可能成立.
若BC⊥A1B,又A1B⊥A1E,則A1B為直線A1E和BC的公垂線,
∴A1B<CE,
設(shè)A1B=1,則經(jīng)計(jì)算可得CE=$\frac{\sqrt{3}}{2}$,
與A1B<CE矛盾,故D不可能成立.
故選D.
點(diǎn)評(píng) 本題考查了空間線面位置關(guān)系的判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | ±1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{2}$或$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或$\frac{16}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com